Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The purpose of this GO.db annotation package is to provide detailed information about the latest version of the Gene Ontologies.
The mzR package provides a unified API to the common file formats and parsers available for mass spectrometry data. It comes with a wrapper for the ISB random access parser for mass spectrometry mzXML, mzData and mzML files. The package contains the original code written by the ISB, and a subset of the proteowizard library for mzML and mzIdentML. The netCDF reading code has previously been used in XCMS.
The sparse nature of single cell epigenomics data can be overruled using probabilistic modelling methods such as Latent Dirichlet Allocation (LDA). This package allows the probabilistic modelling of cis-regulatory topics (cisTopics) from single cell epigenomics data, and includes functionalities to identify cell states based on the contribution of cisTopics and explore the nature and regulatory proteins driving them.
This package provides functions for inferring continuous, branching lineage structures in low-dimensional data. Slingshot was designed to model developmental trajectories in single-cell RNA sequencing data and serve as a component in an analysis pipeline after dimensionality reduction and clustering. It is flexible enough to handle arbitrarily many branching events and allows for the incorporation of prior knowledge through supervised graph construction.
ChIPComp implements a statistical method for quantitative comparison of multiple ChIP-seq datasets. It detects differentially bound sharp binding sites across multiple conditions considering matching control in ChIP-seq datasets.
This package stores the data employed in the vignette of the GSVA package. These data belong to the following publications: Armstrong et al. Nat Genet 30:41-47, 2002; Cahoy et al. J Neurosci 28:264-278, 2008; Carrel and Willard, Nature, 434:400-404, 2005; Huang et al. PNAS, 104:9758-9763, 2007; Pickrell et al. Nature, 464:768-722, 2010; Skaletsky et al. Nature, 423:825-837; Verhaak et al. Cancer Cell 17:98-110, 2010; Costa et al. FEBS J, 288:2311-2331, 2021.
ChemmineR is a cheminformatics package for analyzing drug-like small molecule data in R. It contains functions for efficient processing of large numbers of molecules, physicochemical/structural property predictions, structural similarity searching, classification and clustering of compound libraries with a wide spectrum of algorithms. In addition, it offers visualization functions for compound clustering results and chemical structures.
The semantic comparisons of Gene Ontology (GO) annotations provide quantitative ways to compute similarities between genes and gene groups, and have became important basis for many bioinformatics analysis approaches. GOSemSim is an R package for semantic similarity computation among GO terms, sets of GO terms, gene products and gene clusters.
This package provides fast maximum-likelihood phylogeny inference from noisy single-cell data using the ScisTree algorithm proposed by doi.org/10.1093/bioinformatics/btz676, Yufeng Wu (2019). It makes the method applicable to massive single-cell datasets (>10,000 cells).
The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The key is to understand genomics to improve cancer care. RTCGA package offers download and integration of the variety and volume of TCGA data using patient barcode key, what enables easier data possession. This may have an benefcial infuence on impact on development of science and improvement of patients treatment. Furthermore, RTCGA package transforms TCGA data to tidy form which is convenient to use.
Managing data from large scale projects such as The Cancer Genome Atlas (TCGA) for further analysis is an important and time consuming step for research projects. Several efforts, such as Firehose project, make TCGA pre-processed data publicly available via web services and data portals but it requires managing, downloading and preparing the data for following steps. This package provides an extensible R based data client for Firehose pre-processed data.
This package includes details on variants for each probe on the 450k bead chip for each of the four populations (Asian, American, African and European).
This package implements a model of per-position sequencing bias in high-throughput sequencing data using a simple Bayesian network, the structure and parameters of which are trained on a set of aligned reads and a reference genome sequence.
biomaRt provides an interface to a growing collection of databases implementing the http://www.biomart.org. The package enables retrieval of large amounts of data in a uniform way without the need to know the underlying database schemas or write complex SQL queries. Examples of BioMart databases are Ensembl, COSMIC, Uniprot, HGNC, Gramene, Wormbase and dbSNP mapped to Ensembl. These major databases give biomaRt users direct access to a diverse set of data and enable a wide range of powerful online queries from gene annotation to database mining.
This package provides a collection of tools for doing various analyses of single-cell RNA-seq gene expression data, with a focus on quality control.
The package r-alevinqc generates quality control reports summarizing the output from an alevin run. The reports can be generated as HTML or PDF files, or as Shiny applications.
This package provides methods for microarray analysis that take basic data types such as matrices and lists of vectors. These methods can be used standalone, be utilized in other packages, or be wrapped up in higher-level classes.
This package provides tools for quality control, analysis and visualization of Illumina DNA methylation array data.
This package provides tools for discriminative motif discovery in high throughput genetic sequencing data sets using regression methods.
This package contains class definitions for two-color spotted microarray data. It also includes functions for data input, diagnostic plots, normalization and quality checking.
This package creates karyotype plots of arbitrary genomes and offers a complete set of functions to plot arbitrary data on them. It mimics many R base graphics functions coupling them with a coordinate change function automatically mapping the chromosome and data coordinates into the plot coordinates.
DSS is an R library performing differential analysis for count-based sequencing data. It detects differentially expressed genes (DEGs) from RNA-seq, and differentially methylated loci or regions (DML/DMRs) from bisulfite sequencing (BS-seq). The core of DSS is a dispersion shrinkage method for estimating the dispersion parameter from Gamma-Poisson or Beta-Binomial distributions.
This package provides functions necessary to perform Weighted Correlation Network Analysis on high-dimensional data. It includes functions for rudimentary data cleaning, construction and summarization of correlation networks, module identification and functions for relating both variables and modules to sample traits. It also includes a number of utility functions for data manipulation and visualization.
The package contains functions to infer and visualize cell cycle process using Single-cell RNA-Seq data. It exploits the idea of transfer learning, projecting new data to the previous learned biologically interpretable space. The tricycle provides a pre-learned cell cycle space, which could be used to infer cell cycle time of human and mouse single cell samples. In addition, it also offer functions to visualize cell cycle time on different embeddings and functions to build new reference.