Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Sequential Poisson sampling is a variation of Poisson sampling for drawing probability-proportional-to-size samples with a given number of units, and is commonly used for price-index surveys. This package gives functions to draw stratified sequential Poisson samples according to the method by Ohlsson (1998, ISSN:0282-423X), as well as other order sample designs by Rosén (1997, <doi:10.1016/S0378-3758(96)00186-3>), and generate approximate bootstrap replicate weights according to the generalized bootstrap method by Beaumont and Patak (2012, <doi:10.1111/j.1751-5823.2011.00166.x>).
Launch a shiny application for tidymodels results. For classification or regression models, the app can be used to determine if there is lack of fit or poorly predicted points.
Offers a fast algorithm for fitting solution paths of sparse SVM models with lasso or elastic-net regularization. Reference: Congrui Yi and Jian Huang (2017) <doi:10.1080/10618600.2016.1256816>.
Identifying spatially variable genes is critical in linking molecular cell functions with tissue phenotypes. This package utilizes a granularity-based dimension-agnostic tool, single-cell big-small patch (scBSP), implementing sparse matrix operation and KD tree methods for distance calculation, for the identification of spatially variable genes on large-scale data. The detailed description of this method is available at Wang, J. and Li, J. et al. 2023 (Wang, J. and Li, J. (2023), <doi:10.1038/s41467-023-43256-5>).
This package provides tools for using the StreamCat and LakeCat API and interacting with the StreamCat and LakeCat database. Convenience functions in the package wrap the API for StreamCat on <https://api.epa.gov/StreamCat/streams/metrics>.
Interface for creation of slp class smoother objects for use in Generalized Additive Models (as implemented by packages gam and mgcv').
Sequential triangular test for the arithmetic mean in one- and two- samples, proportions in one- and two-samples, and the Pearson's correlation coefficient.
This package implements an approach aimed at assessing the accuracy and effectiveness of raw scores obtained in scales that contain locally dependent items. The program uses as input the calibration (structural) item estimates obtained from fitting extended unidimensional factor-analytic solutions in which the existing local dependencies are included. Measures of reliability (Omega) and information are proposed at three levels: (a) total score, (b) bivariate-doublet, and (c) item-by-item deletion, and are compared to those that would be obtained if all the items had been locally independent. All the implemented procedures can be obtained from: (a) linear factor-analytic solutions in which the item scores are treated as approximately continuous, and (b) non-linear solutions in which the item scores are treated as ordered-categorical. A detailed guide can be obtained at the following url.
This package provides functionality for working with tensors, alternating forms, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Uses disordR discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>). The canonical reference would be M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds". To cite the package in publications please use Hankin (2022) <doi:10.48550/arXiv.2210.17008>.
Estimation and inference for parameters in a Gaussian copula model, treating the univariate marginal distributions as nuisance parameters as described in Hoff (2007) <doi:10.1214/07-AOAS107>. This package also provides a semiparametric imputation procedure for missing multivariate data.
Computes smooth estimations for the Cumulative/Dynamic and Incident/Dynamic ROC curves, in presence of right censorship, based on the bivariate kernel density estimation of the joint distribution function of the Marker and Time-to-event variables.
Create Upset plots using a combination of ggplot2 and patchwork'.
SCEPtER pipeline for estimating the stellar age for double-lined detached binary systems. The observational constraints adopted in the recovery are the effective temperature, the metallicity [Fe/H], the mass, and the radius of the two stars. The results are obtained adopting a maximum likelihood technique over a grid of pre-computed stellar models.
This package provides a set of functions is provided for 1) the stratum lengths analysis along a chosen direction, 2) fast estimation of continuous lag spatial Markov chains model parameters and probability computing (also for large data sets), 3) transition probability maps and transiograms drawing, 4) simulation methods for categorical random fields. More details on the methodology are discussed in Sartore (2013) <doi:10.32614/RJ-2013-022> and Sartore et al. (2016) <doi:10.1016/j.cageo.2016.06.001>.
Sometimes it is handy to be able to view an image file on an R graphics device. This package just does that. Currently it supports PNG files.
Stacked ensemble for regression tasks based on mlr3 framework with a pipeline for preprocessing numeric and factor features and hyper-parameter tuning using grid or random search.
Spatial coverage sampling and random sampling from compact geographical strata created by k-means. See Walvoort et al. (2010) <doi:10.1016/j.cageo.2010.04.005> for details.
Identifies single nucleotide variants in next-generation sequencing data by estimating their local false discovery rates. For more details, see Karimnezhad, A. and Perkins, T. J. (2024) <doi:10.1038/s41598-024-51958-z>.
This package creates simulated data from structural equation models with standardized loading. Data generation methods are described in Schneider (2013) <doi:10.1177/0734282913478046>.
This package contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions.
This package provides tools for processing and evaluating seasonal weather forecasts, with an emphasis on tercile forecasts. We follow the World Meteorological Organization's "Guidance on Verification of Operational Seasonal Climate Forecasts", S.J.Mason (2018, ISBN: 978-92-63-11220-0, URL: <https://library.wmo.int/idurl/4/56227>). The development was supported by the European Unionâ s Horizon 2020 research and innovation programme under grant agreement no. 869730 (CONFER). A comprehensive online tutorial is available at <https://seasonalforecastingengine.github.io/SeaValDoc/>.
Construct subtests from a pool of items by using ant-colony-optimization, genetic algorithms, brute force, or random sampling. Schultze (2017) <doi:10.17169/refubium-622>.
This package provides function for area level of small area estimation using hierarchical Bayesian (HB) method with Zero-Inflated Binomial distribution for variables of interest. Some dataset produced by a data generation are also provided. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean.
This package provides functions and data sets for data sharpening. Nonparametric regressions are computed subject to smoothness and other kinds of penalties.