Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generate basic charts either by custom applications, or from a small script launched from the system console, or within the R console. Two ASCII text files are necessary: (1) The graph parameters file, which name is passed to the function rplotengine()'. The user can specify the titles, choose the type of the graph, graph output formats (e.g. png, eps), proportion of the X-axis and Y-axis, position of the legend, whether to show or not a grid at the background, etc. (2) The data to be plotted, which name is specified as a parameter ('data_filename') in the previous file. This data file has a tabulated format, with a single character (e.g. tab) between each column. Optionally, the file could include data columns for showing confidence intervals.
This package provides tools for generation of (life-history) traits and diversity maps on hexagonal or square grids. Valcu et al.(2012) <doi:10.1111/j.1466-8238.2011.00739.x>.
Creation, estimation, and prediction of random weight neural networks (RWNN), Schmidt et al. (1992) <doi:10.1109/ICPR.1992.201708>, including popular variants like extreme learning machines, Huang et al. (2006) <doi:10.1016/j.neucom.2005.12.126>, sparse RWNN, Zhang et al. (2019) <doi:10.1016/j.neunet.2019.01.007>, and deep RWNN, Henrà quez et al. (2018) <doi:10.1109/IJCNN.2018.8489703>. It further allows for the creation of ensemble RWNNs like bagging RWNN, Sui et al. (2021) <doi:10.1109/ECCE47101.2021.9595113>, boosting RWNN, stacking RWNN, and ensemble deep RWNN, Shi et al. (2021) <doi:10.1016/j.patcog.2021.107978>.
This package provides a set of functions to create random Analysis Data Model (ADaM) datasets and cached dataset. ADaM dataset specifications are described by the Clinical Data Interchange Standards Consortium (CDISC) Analysis Data Model Team.
Tensor Factor Models (TFM) are appealing dimension reduction tools for high-order tensor time series, and have wide applications in economics, finance and medical imaging. We propose an one-step projection estimator by minimizing the least-square loss function, and further propose a robust estimator with an iterative weighted projection technique by utilizing the Huber loss function. The methods are discussed in Barigozzi et al. (2022) <arXiv:2206.09800>, and Barigozzi et al. (2023) <arXiv:2303.18163>.
This package implements methods described by the paper Robins and Tsiatis (1991) <DOI:10.1080/03610929108830654>. These use g-estimation to estimate the causal effect of a treatment in a two-armed randomised control trial where non-compliance exists and is measured, under an assumption of an accelerated failure time model and no unmeasured confounders.
Compute spatially explicit land-use metrics for stream survey sites in GRASS GIS and R as an open-source implementation of IDW-PLUS (Inverse Distance Weighted Percent Land Use for Streams). The package includes functions for preprocessing digital elevation and streams data, and one function to compute all the spatially explicit land use metrics described in Peterson et al. (2011) <doi:10.1111/j.1365-2427.2010.02507.x> and previously implemented by Peterson and Pearse (2017) <doi:10.1111/1752-1688.12558> in ArcGIS-Python as IDW-PLUS.
Assists in the manipulation and processing of linear features with the help of the sf package. Makes use of linear referencing to extract data from most shape files. Reference for this packages methods: Albeke, S.E. et al. (2010) <doi:10.1007/s10980-010-9528-4>.
Convert text into target classifications (e.g., ISO 3166-1) using a JSON mapping with regular expressions. Provides helpers to return the full mapping and associated metadata.
Efficient reading of raw markdown tables into tibbles. Designed to accept content from strings, files, and URLs with the ability to extract and read multiple tables from markdown for analysis.
Estimates disease prevalence for a given index date using existing registry data extended with Monte Carlo simulations following the method of Crouch et al (2014) <doi: 10.1016/j.canep.2014.02.005>.
Application of reinsurance treaties to claims portfolios. The package creates a class Claims whose objective is to store claims and premiums, on which different treaties can be applied. A statistical analysis can then be applied to measure the impact of reinsurance, producing a table or graphical output. This package can be used for estimating the impact of reinsurance on several portfolios or for pricing treaties through statistical analysis. Documentation for the implemented methods can be found in "Reinsurance: Actuarial and Statistical Aspects" by Hansjöerg Albrecher, Jan Beirlant, Jozef L. Teugels (2017, ISBN: 978-0-470-77268-3) and "REINSURANCE: A Basic Guide to Facultative and Treaty Reinsurance" by Munich Re (2010) <https://www.munichre.com/site/mram/get/documents_E96160999/mram/assetpool.mr_america/PDFs/3_Publications/reinsurance_basic_guide.pdf>.
The Diceware method can be used to generate strong passphrases. In short, you roll a 6-faced dice 5 times in a row, the number obtained is matched against a dictionary of easily remembered words. By combining together 7 words thus generated, you obtain a password that is relatively easy to remember, but would take several millions years (on average) for a powerful computer to guess.
The RQuantLib package makes parts of QuantLib accessible from R The QuantLib project aims to provide a comprehensive software framework for quantitative finance. The goal is to provide a standard open source library for quantitative analysis, modeling, trading, and risk management of financial assets.
An implementation of the radviz projection in R. It enables the visualization of multidimensional data while maintaining the relation to the original dimensions. This package provides functions to create and plot radviz projections, and a number of summary plots that enable comparison and analysis. For reference see Hoffman *et al.* (1999) (<doi:10.1145/331770.331775>) for original implementation, see Di Caro *et al* (2012) (<doi:10.1007/978-3-642-13672-6_13>), for the original method for dimensional anchor arrangements, see Demsar *et al.* (2007) (<doi:10.1016/j.jbi.2007.03.010>) for the original Freeviz implementation.
Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Candes, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11. prove that we can recover each component individually under some suitable assumptions. It is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the L1 norm. This package implements this decomposition algorithm resulting with Robust PCA approach.
Build regular expressions using grammar and functionality inspired by <https://github.com/VerbalExpressions>. Usage of the %>% is encouraged to build expressions in a chain-like fashion.
Wraps some of the matrix exponentiation utilities from EXPOKIT (<http://www.maths.uq.edu.au/expokit/>), a FORTRAN library that is widely recommended for matrix exponentiation (Sidje RB, 1998. "Expokit: A Software Package for Computing Matrix Exponentials." ACM Trans. Math. Softw. 24(1): 130-156). EXPOKIT includes functions for exponentiating both small, dense matrices, and large, sparse matrices (in sparse matrices, most of the cells have value 0). Rapid matrix exponentiation is useful in phylogenetics when we have a large number of states (as we do when we are inferring the history of transitions between the possible geographic ranges of a species), but is probably useful in other ways as well. NOTE: In case FORTRAN checks temporarily get rexpokit archived on CRAN, see archived binaries at GitHub in: nmatzke/Matzke_R_binaries (binaries install without compilation of source code).
Interface to easily access data via the United States Department of Agriculture (USDA)'s Agricultural Resource Management Survey (ARMS) Data API <https://www.ers.usda.gov/developer/data-apis/arms-data-api/>. The downloaded data can be saved for later off-line use. Also provide relevant information and metadata for each of the input variables needed for sending the data inquery.
Area under the receiver operating characteristic curves (AUC) statistic for significance test. Variance and covariance of AUC values used to assess the 95% Confidence interval (CI) and p-value of the AUC difference for both nested and non-nested model.
Constructs various robust quality control charts based on the median or Hodges-Lehmann estimator (location) and the median absolute deviation (MAD) or Shamos estimator (scale). The estimators used for the robust control charts are all unbiased with a sample of finite size. For more details, see Park, Kim and Wang (2022) <doi:10.1080/03610918.2019.1699114>. In addition, using this R package, the conventional quality control charts such as X-bar, S, R, p, np, u, c, g, h, and t charts are also easily constructed. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1091319).
Automatic, semi-automatic, and manual functions for generating color maps from images. The idea is to simplify the colors of an image according to a metric that is useful for the user, using deterministic methods whenever possible. Many images will be clustered well using the out-of-the-box functions, but the package also includes a toolbox of functions for making manual adjustments (layer merging/isolation, blurring, fitting to provided color clusters or those from another image, etc). Also includes export methods for other color/pattern analysis packages (pavo, patternize, colordistance).
Extends the functionality of the RTMB <https://kaskr.r-universe.dev/RTMB> package by providing a collection of non-standard probability distributions compatible with automatic differentiation (AD). While RTMB enables flexible and efficient modelling, including random effects, its built-in support is limited to standard distributions. The package adds additional AD-compatible distributions, broadening the range of models that can be implemented and estimated using RTMB'. Automatic differentiation and Laplace approximation are described in Kristensen et al. (2016) <doi:10.18637/jss.v070.i05>.
This package provides a data mining approach for longitudinal and clustered data, which combines the structure of mixed effects model with tree-based estimation methods. See Sela, R.J. and Simonoff, J.S. (2012) RE-EM trees: a data mining approach for longitudinal and clustered data <doi:10.1007/s10994-011-5258-3>.