Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package was automatically created by package AnnotationForge version 1.11.20. The probe sequence data was obtained from http://www.affymetrix.com.
Precise measurements are important for epigenome-wide studies investigating DNA methylation in whole blood samples, where effect sizes are expected to be small in magnitude. The 450K platform is often affected by batch effects and proper preprocessing is recommended. This package provides functions to read and normalize 450K .idat files. The normalization corrects for dye bias and biases related to signal intensity and methylation of probes using local regression. No adjustment for probe type bias is performed to avoid the trade-off of precision for accuracy of beta-values.
This package allows to detect and correct for spatial and intensity biases with two-channel microarray data. The normalization method implemented in this package is based on robust neural networks fitting.
Perform non-parametric analysis of response curves as described by Childs, Bach, Franken et al. (2019): Non-parametric analysis of thermal proteome profiles reveals novel drug-binding proteins.
Package nethet is an implementation of statistical solid methodology enabling the analysis of network heterogeneity from high-dimensional data. It combines several implementations of recent statistical innovations useful for estimation and comparison of networks in a heterogeneous, high-dimensional setting. In particular, we provide code for formal two-sample testing in Gaussian graphical models (differential network and GGM-GSA; Stadler and Mukherjee, 2013, 2014) and make a novel network-based clustering algorithm available (mixed graphical lasso, Stadler and Mukherjee, 2013).
Nucleolus is an important structure inside the nucleus in eukaryotic cells. It is the site for transcribing rDNA into rRNA and for assembling ribosomes, aka ribosome biogenesis. In addition, nucleoli are dynamic hubs through which numerous proteins shuttle and contact specific non-rDNA genomic loci. Deep sequencing analyses of DNA associated with isolated nucleoli (NAD- seq) have shown that specific loci, termed nucleolus- associated domains (NADs) form frequent three- dimensional associations with nucleoli. NAD-seq has been used to study the biological functions of NAD and the dynamics of NAD distribution during embryonic stem cell (ESC) differentiation. Here, we developed a Bioconductor package NADfinder for bioinformatic analysis of the NAD-seq data, including baseline correction, smoothing, normalization, peak calling, and annotation.
The NanoporeRNASeq package contains long read RNA-Seq data generated using Oxford Nanopore Sequencing. The data consists of 6 samples from two human cell lines (K562 and MCF7) that were generated by the SG-NEx project. Each of these cell lines has three replicates, with 1 direct RNA sequencing data and 2 cDNA sequencing data. Reads are aligned to chromosome 22 (Grch38) and stored as bam files. The original data is from the SG-NEx project.
Computes Multiple Co-Inertia Analysis (MCIA), a dimensionality reduction (jDR) algorithm, for a multi-block dataset using a modification to the Nonlinear Iterative Partial Least Squares method (NIPALS) proposed in (Hanafi et. al, 2010). Allows multiple options for row- and table-level preprocessing, and speeds up computation of variance explained. Vignettes detail application to bulk- and single cell- multi-omics studies.
Experimental organization of combined expression and CGH data.
This package provides various methods to load the pathways from the NCI Pathways Database in R graph objects and to re-format them.
This package provides functionality for untargeted LC-MS metabolomics research as specified in the associated protocol article in the Metabolomics Data Processing and Data Analysis—Current Best Practices special issue of the Metabolites journal (2020). This includes tabular data preprocessing and quality control, uni- and multivariate analysis as well as quality control visualizations, feature-wise visualizations and results visualizations. Raw data preprocessing and functionality related to biological context, such as pathway analysis, is not included.
Boosting supported network analysis for high-dimensional omics applications.
Subset of BAM files of human lung tumor and pooled normal samples by targeted panel sequencing. [Zhao et al 2014. Targeted Sequencing in Non-Small Cell Lung Cancer (NSCLC) Using the University of North Carolina (UNC) Sequencing Assay Captures Most Previously Described Genetic Aberrations in NSCLC. In preparation.] Each sample is a 10 percent random subsample drawn from the original sequencing data. The pooled normal sample has been rescaled accroding to the total number of normal samples in the "pool". Here provided is the subsampled data on chr6 (hg19).
This Package utilizes a generalized linear model(GLM) of the negative binomial family to characterize count data and allows for multi-factor design. NanoStrongDiff incorporate size factors, calculated from positive controls and housekeeping controls, and background level, obtained from negative controls, in the model framework so that all the normalization information provided by NanoString nCounter Analyzer is fully utilized.
This package provides a pipeline to discern RNA structure at and proximal to the site of protein binding within regions of the transcriptome defined by the user. CLIP protein-binding data can be input as either aligned BAM or peak-called bedGraph files. RNA structure can either be predicted internally from sequence or users have the option to input their own RNA structure data. RNA structure binding profiles can be visually and quantitatively compared across multiple formats.
This package provides next-generation sequencing (NGS) and mass spectrometry (MS) sample data, code snippets and replication material used for developing NestLink. The NestLink approach is a protein binder selection and identification technology able to biophysically characterize thousands of library members at once without handling individual clones at any stage of the process. Data were acquired on NGS and MS platforms at the Functional Genomics Center Zurich.
# NetActivity enables to compute gene set scores from previously trained sparsely-connected autoencoders. The package contains a function to prepare the data (`prepareSummarizedExperiment`) and a function to compute the gene set scores (`computeGeneSetScores`). The package `NetActivityData` contains different pre-trained models to be directly applied to the data. Alternatively, the users might use the package to compute gene set scores using custom models.
This package contains the weights from pre-trained shallow sparsely-connected autoencoders. This data is required for getting the gene set scores with NetActivity package.
NxtIRFdata is a companion package for SpliceWiz, an interactive analysis and visualization tool for alternative splicing quantitation (including intron retention) for RNA-seq BAM files. NxtIRFdata contains Mappability files required for the generation of human and mouse references. NxtIRFdata also contains a synthetic genome reference and example BAM files used to demonstrate SpliceWiz's functionality. BAM files are based on 6 samples from the Leucegene dataset provided by NCBI Gene Expression Omnibus under accession number GSE67039.
NetPathMiner is a general framework for network path mining using genome-scale networks. It constructs networks from KGML, SBML and BioPAX files, providing three network representations, metabolic, reaction and gene representations. NetPathMiner finds active paths and applies machine learning methods to summarize found paths for easy interpretation. It also provides static and interactive visualizations of networks and paths to aid manual investigation.
NanoMethViz is a toolkit for visualising methylation data from Oxford Nanopore sequencing. It can be used to explore methylation patterns from reads derived from Oxford Nanopore direct DNA sequencing with methylation called by callers including nanopolish, f5c and megalodon. The plots in this package allow the visualisation of methylation profiles aggregated over experimental groups and across classes of genomic features.
This package provides a model designed for dimensionality reduction and batch effect removal for scRNA-seq data. It is designed to be massively parallelizable using shared objects that prevent memory duplication, and it can be used with different mini-batch approaches in order to reduce time consumption. It assumes a negative binomial distribution for the data with a dispersion parameter that can be both commonwise across gene both genewise.
Norway981 http://genome-www5.stanford.edu/ Annotation Data (Norway981) assembled using data from public repositories.
This package provides a package containing an environment representing the NuGO_Mm1a520177.cdf file.