Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Two main functionalities are provided. One of them is predicting values with k-nearest neighbors algorithm and the other is optimizing the parameters k and d of the algorithm. These are carried out in parallel using multiple threads.
Wrapper for Kobotoolbox APIs ver 2 mentioned at <https://support.kobotoolbox.org/api.html>, to download data from Kobotoolbox to R. Small and simple package that adds immense convenience for the data professionals using Kobotoolbox'.
Kernel functions for diverse types of data (including, but not restricted to: nonnegative and real vectors, real matrices, categorical and ordinal variables, sets, strings), plus other utilities like kernel similarity, kernel Principal Components Analysis (PCA) and features importance for Support Vector Machines (SVMs), which expand other R packages like kernlab'.
This package provides a function called COTUCKER3() (Co-Inertia Analysis + Tucker3 method) which performs a Co-Tucker3 analysis of two sequences of matrices, as well as other functions called PCA() (Principal Component Analysis) and BGA() (Between-Groups Analysis), which perform analysis of one matrix, COIA() (Co-Inertia Analysis), which performs analysis of two matrices, PTA() (Partial Triadic Analysis), STATIS(), STATISDUAL() and TUCKER3(), which perform analysis of a sequence of matrices, and BGCOIA() (Between-Groups Co-Inertia Analysis), STATICO() (STATIS method + Co-Inertia Analysis), COSTATIS() (Co-Inertia Analysis + STATIS method), which also perform analysis of two sequences of matrices.
Prediction with k* nearest neighbor algorithm based on a publication by Anava and Levy (2016) <arXiv:1701.07266>.
Quality of life functions for interactive programming. Shortcuts for common combinations of functions or different default arguments. Not to be used in production level scripts, but useful for exploring and quickly manipulating data for easy analysis. Also imports a variety of packages to facilitate the installation of those imported packages on the host machine.
This package provides a collection of useful functions not found anywhere else, mainly for programming: Pretty intervals, generalized lagged differences, checking containment in an interval, and an alternative interface to assign().
The goal of kronos is to provide an easy-to-use framework to analyse circadian or otherwise rhythmic data using the familiar R linear modelling syntax, while taking care of the trigonometry under the hood.
Given a set of points around a knee curve, analyzes first and second derivatives to find knee points.
Simulating species migration and range dynamics under stable or changing environmental conditions based on a simple, raster-based, deterministic or stochastic migration model. KISSMig runs on binary or quantitative suitability maps, which are pre-calculated with niche-based habitat suitability models (also called ecological niche models (ENMs) or species distribution models (SDMs)). Nobis & Normand (2014), <doi:10.1111/ecog.00930>.
This package contains kidney care oriented functions. Current version contains functions for calculation of: - Estimated glomerular filtration rate by CKD-EPI (2021 and 2009), MDRD, CKiD, FAS, EKFC, etc. - Kidney Donor Risk Index and Kidney Donor Profile Index for kidney transplant donors. - Citation: Bikbov B. kidney.epi: Kidney-Related Functions for Clinical and Epidemiological Research. Scientific-Tools.Org, <https://Scientific-Tools.Org>. <doi:10.32614/CRAN.package.kidney.epi>.
This is a C++ mutual information (MI) library based on the k-nearest neighbor (KNN) algorithm. There are three functions provided for computing MI for continuous values, mixed continuous and discrete values, and conditional MI for continuous values. They are based on algorithms by A. Kraskov, et. al. (2004) <doi:10.1103/PhysRevE.69.066138>, BC Ross (2014)<doi:10.1371/journal.pone.0087357>, and A. Tsimpiris (2012) <doi:10.1016/j.eswa.2012.05.014>, respectively.
Kernel Fisher Discriminant Analysis (KFDA) is performed using Kernel Principal Component Analysis (KPCA) and Fisher Discriminant Analysis (FDA). There are some similar packages. First, lfda is a package that performs Local Fisher Discriminant Analysis (LFDA) and performs other functions. In particular, lfda seems to be impossible to test because it needs the label information of the data in the function argument. Also, the ks package has a limited dimension, which makes it difficult to analyze properly. This package is a simple and practical package for KFDA based on the paper of Yang, J., Jin, Z., Yang, J. Y., Zhang, D., and Frangi, A. F. (2004) <DOI:10.1016/j.patcog.2003.10.015>.
This package implements approaches of non-parametric smooth test to compare simultaneously K(K>1) copulas and non-parametric clustering of multivariate populations with arbitrary sizes. See Yves I. Ngounou Bakam and Denys Pommeret (2022) <arXiv:2112.05623> and Yves I. Ngounou Bakam and Denys Pommeret (2022) <arXiv:2211.06338>.
This package provides functions for analysing eye tracking data, including event detection, visualizations and area of interest (AOI) based analyses. The package includes implementations of the IV-T, I-DT, adaptive velocity threshold, and Identification by two means clustering (I2MC) algorithms. See separate documentation for each function. The principles underlying I-VT and I-DT algorithms are described in Salvucci & Goldberg (2000,\doi10.1145/355017.355028). Two-means clustering is described in Hessels et al. (2017, \doi10.3758/s13428-016-0822-1). The adaptive velocity threshold algorithm is described in Nyström & Holmqvist (2010,\doi10.3758/BRM.42.1.188). See a demonstration in the URL.
Rcpp implementation of the multivariate Kalman filter for state space models that can handle missing values and exogenous data in the observation and state equations. There is also a function to handle time varying parameters. Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>.
This package provides wind energy practitioners with an effective machine learning-based tool that estimates a multivariate power curve and predicts the wind power output for a specific environmental condition.
This package provides methods for inference about/under complex relationships using peak height data from DNA mixtures: the most basic example would be testing whether a contributor to a mixture is the father of a child of known genotype. This provides most of the functionality of the KinMix package, but with some loss of efficiency and restriction on problem size, as the latter uses RHugin as the Bayes net engine, while this package uses gRain'. The package implements the methods introduced in Green, P. J. and Mortera, J. (2017) <doi:10.1016/j.fsigen.2017.02.001> and Green, P. J. and Mortera, J. (2021) <doi:10.1111/rssc.12498>.
Implementation of various kernel adaptive methods in nonparametric curve estimation like density estimation as introduced in Stute and Srihera (2011) <doi:10.1016/j.spl.2011.01.013> and Eichner and Stute (2013) <doi:10.1016/j.jspi.2012.03.011> for pointwise estimation, and like regression as described in Eichner and Stute (2012) <doi:10.1080/10485252.2012.760737>.
This package provides a set of functions designed to quickly generate results of a multiple choice test. Generates detailed global results, lists for anonymous feedback and personalised result feedback (in LaTeX and/or PDF format), as well as item statistics like Cronbach's alpha or disciminatory power. klausuR also includes a plugin for the R GUI and IDE RKWard, providing graphical dialogs for its basic features. The respective R package rkward cannot be installed directly from a repository, as it is a part of RKWard. To make full use of this feature, please install RKWard from <https://rkward.kde.org> (plugins are detected automatically). Due to some restrictions on CRAN, the full package sources are only available from the project homepage.
Implementations of the kernel measure of multi-sample dissimilarity (KMD) between several samples using K-nearest neighbor graphs and minimum spanning trees. The KMD measures the dissimilarity between multiple samples, based on the observations from them. It converges to the population quantity (depending on the kernel) which is between 0 and 1. A small value indicates the multiple samples are from the same distribution, and a large value indicates the corresponding distributions are different. The population quantity is 0 if and only if all distributions are the same, and 1 if and only if all distributions are mutually singular. The package also implements the tests based on KMD for H0: the M distributions are equal against H1: not all the distributions are equal. Both permutation test and asymptotic test are available. These tests are consistent against all alternatives where at least two samples have different distributions. For more details on KMD and the associated tests, see Huang, Z. and B. Sen (2022) <arXiv:2210.00634>.
Attempts to remove vocals from a stereo .wav recording of a song.
S4 tool box for capacity (or non-additive measure, fuzzy measure) and integral manipulation in a finite setting. It contains routines for handling various types of set functions such as games or capacities. It can be used to compute several non-additive integrals: the Choquet integral, the Sugeno integral, and the symmetric and asymmetric Choquet integrals. An analysis of capacities in terms of decision behavior can be performed through the computation of various indices such as the Shapley value, the interaction index, the orness degree, etc. The well-known Möbius transform, as well as other equivalent representations of set functions can also be computed. Kappalab further contains seven capacity identification routines: three least squares based approaches, a method based on linear programming, a maximum entropy like method based on variance minimization, a minimum distance approach and an unsupervised approach based on parametric entropies. The functions contained in Kappalab can for instance be used in the framework of multicriteria decision making or cooperative game theory.
Distance metrics for mixed-type data consisting of continuous, nominal, and ordinal variables. This methodology uses additive and product kernels to calculate similarity functions and metrics, and selects variables relevant to the underlying distance through bandwidth selection via maximum similarity cross-validation. These methods can be used in any distance-based algorithm, such as distance-based clustering. For further details, we refer the reader to Ghashti and Thompson (2024) <doi:10.1007/s00357-024-09493-z> for dkps() methodology, and Ghashti (2024) <doi:10.14288/1.0443975> for dkss() methodology.