Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Additional options for making graphics in the context of analyzing high-throughput data are available here. This includes automatic segmenting of the current device (eg window) to accommodate multiple new plots, automatic checking for optimal location of legends in plots, small histograms to insert as legends, histograms re-transforming axis labels to linear when plotting log2-transformed data, a violin-plot <doi:10.1080/00031305.1998.10480559> function for a wide variety of input-formats, principal components analysis (PCA) <doi:10.1080/14786440109462720> with bag-plots <doi:10.1080/00031305.1999.10474494> to highlight and compare the center areas for groups of samples, generic MA-plots (differential- versus average-value plots) <doi:10.1093/nar/30.4.e15>, staggered count plots and generation of mouse-over interactive html pages.
This package provides a conditional independence test that can be applied both to univariate and multivariate random variables. The test is based on a weighted form of the sample covariance of the residuals after a nonlinear regression on the conditioning variables. Details are described in Scheidegger, Hoerrmann and Buehlmann (2022) "The Weighted Generalised Covariance Measure" <http://jmlr.org/papers/v23/21-1328.html>. The test is a generalisation of the Generalised Covariance Measure (GCM) implemented in the R package GeneralisedCovarianceMeasure by Jonas Peters and Rajen D. Shah based on Shah and Peters (2020) "The Hardness of Conditional Independence Testing and the Generalised Covariance Measure" <doi:10.1214/19-AOS1857>.
This package provides a WebSocket client interface for R. WebSocket is a protocol for low-overhead real-time communication: <https://en.wikipedia.org/wiki/WebSocket>.
This package implements the diagnostic "theta" developed in Poetscher and Preinerstorfer (2020) "How Reliable are Bootstrap-based Heteroskedasticity Robust Tests?" <arXiv:2005.04089>. This diagnostic can be used to detect and weed out bootstrap-based procedures that provably have size equal to one for a given testing problem. The implementation covers a large variety of bootstrap-based procedures, cf. the above mentioned article for details. A function for computing bootstrap p-values is provided.
Computes the exact observation weights for the Kalman filter and smoother, based on the method described in Koopman and Harvey (2003) <www.sciencedirect.com/science/article/pii/S0165188902000611>. The package supports in-depth exploration of state-space models, enabling researchers and practitioners to extract meaningful insights from time series data. This functionality is especially valuable in dynamic factor models, where the computed weights can be used to decompose the contributions of individual variables to the latent factors. See the README file for examples.
Assessing predictive models of spatial data can be challenging, both because these models are typically built for extrapolating outside the original region represented by training data and due to potential spatially structured errors, with "hot spots" of higher than expected error clustered geographically due to spatial structure in the underlying data. Methods are provided for assessing models fit to spatial data, including approaches for measuring the spatial structure of model errors, assessing model predictions at multiple spatial scales, and evaluating where predictions can be made safely. Methods are particularly useful for models fit using the tidymodels framework. Methods include Moran's I ('Moran (1950) <doi:10.2307/2332142>), Geary's C ('Geary (1954) <doi:10.2307/2986645>), Getis-Ord's G ('Ord and Getis (1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>), agreement coefficients from Ji and Gallo (2006) (<doi: 10.14358/PERS.72.7.823>), agreement metrics from Willmott (1981) (<doi: 10.1080/02723646.1981.10642213>) and Willmott et al'. (2012) (<doi: 10.1002/joc.2419>), an implementation of the area of applicability methodology from Meyer and Pebesma (2021) (<doi:10.1111/2041-210X.13650>), and an implementation of multi-scale assessment as described in Riemann et al'. (2010) (<doi:10.1016/j.rse.2010.05.010>).
Easily override the default visual choices in ggplot2 to make your time series plots look more like the Wall Street Journal. Specific theme design choices include omitting x-axis grid lines and displaying sparse light grey y-axis grid lines. Additionally, this allows to label the y-axis scales with your units only displayed on the top-most number, while also removing the bottom most number (unless specifically overridden). The goal is visual simplicity, because who has time to waste looking at a cluttered graph?
Fetch and clean data from the World Database on Protected Areas (WDPA) and the World Database on Other Effective Area-Based Conservation Measures (WDOECM). Data is obtained from Protected Planet <https://www.protectedplanet.net/en>. To augment data cleaning procedures, users can install the prepr R package (available at <https://github.com/prioritizr/prepr>). For more information on this package, see Hanson (2022) <doi:10.21105/joss.04594>.
This package provides functions to convert between weather metrics, including conversions for metrics of temperature, air moisture, wind speed, and precipitation. This package also includes functions to calculate the heat index from air temperature and air moisture.
K-means clustering, hierarchical clustering, and PCA with observational weights and/or variable weights. It also includes the corresponding functions for data nuggets which serve as representative samples of large datasets. Cherasia et al., (2022) <doi:10.1007/978-3-031-22687-8_20>. Amaratunga et al., (2009) <doi:10.1002/9780470317129>.
This package provides tools for a wavelet-based approach to analyzing spatial synchrony, principally in ecological data. Some tools will be useful for studying community synchrony. See, for instance, Sheppard et al (2016) <doi: 10.1038/NCLIMATE2991>, Sheppard et al (2017) <doi: 10.1051/epjnbp/2017000>, Sheppard et al (2019) <doi: 10.1371/journal.pcbi.1006744>.
Obtain the native stack trace and fuse it with R's stack trace for easier debugging of R packages with native code.
Application to estimate statistical values using properties provided by a group of individuals to describe concepts using shiny'. It estimates the underlying distribution to generate new descriptive words Canessa et al. (2023) <doi:10.3758/s13428-022-01811-w>, applies a new clustering model, and uses simulations to estimate the probability that two persons describe the same words based on their descriptions Canessa et al. (2022) <doi:10.3758/s13428-022-02030-z>.
Generate wordsearch and crossword puzzles using custom lists of words (and clues). Make them easy or hard, and print them to solve offline with paper and pencil!
This package performs a sensitivity analysis using weighted rank tests in observational studies with I blocks of size J; see Rosenbaum (2024) <doi:10.1080/01621459.2023.2221402>. The package can perform adaptive inference in block designs; see Rosenbaum (2012) <doi:10.1093/biomet/ass032>. The package can increase design sensitivity using the conditioning tactic in Rosenbaum (2025) <doi:10.1093/jrsssb/qkaf007>. The main functions are wgtRank(), wgtRankCI(), wgtRanktt() and wgtRankC().
Allow users to obtain clean and tidy football (soccer) game, team and player data. Data is collected from a number of popular sites, including FBref', transfer and valuations data from Transfermarkt'<https://www.transfermarkt.com/> and shooting location and other match stats data from Understat'<https://understat.com/> and fotmob'<https://www.fotmob.com/>. It gives users the ability to access data more efficiently, rather than having to export data tables to files before being able to complete their analysis.
This package creates interactive web maps using the JavaScript Leaflet library with base layers of The National Map ('TNM'). TNM services provide access to base geospatial information that describes the landscape of the United States and its territories. This package is dependent on, and intended to be used with, the leaflet package.
Data from the United Nation's World Population Prospects 2010.
Data structures and methods to work with web tracking data. The functions cover data preprocessing steps, enriching web tracking data with external information and methods for the analysis of digital behavior as used in several academic papers (e.g., Clemm von Hohenberg et al., 2023 <doi:10.17605/OSF.IO/M3U9P>; Stier et al., 2022 <doi:10.1017/S0003055421001222>).
Estimates Poole and Rosenthal's (1985 <doi:10.2307/2111172>, 1991 <doi:10.2307/2111445>) W-NOMINATE scores from roll call votes supplied though a rollcall object from the pscl package.
This package provides insight into how the best hand for a poker game changes based on the game dealt, players who stay in until the showdown and wildcards added to the base game. At this time the package does not support player tactics, so draw poker variants are not included.
An enhanced implementation of Whittaker-Henderson smoothing for the graduation of one-dimensional and two-dimensional actuarial tables used to quantify Life Insurance risks. WH is based on the methods described in Biessy (2025) <doi:10.48550/arXiv.2306.06932>. Among other features, it generalizes the original smoothing algorithm to maximum likelihood estimation, automatically selects the smoothing parameter(s) and extrapolates beyond the range of data.
Displays geospatial data on an interactive 3D globe in the web browser.
This package contains functions for computing and plotting discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transforms (MODWT), as well as their inverses. Additionally, it contains functionality for computing and plotting wavelet transform filters that are used in the above decompositions as well as multiresolution analyses.