Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fast and efficient reading and writing of mass spectrometry imaging data files. Supports imzML and Analyze 7.5 formats. Provides ontologies for mass spectrometry imaging.
The CTexploreR package re-defines the list of Cancer Testis/Germline (CT) genes. It is based on publicly available RNAseq databases (GTEx, CCLE and TCGA) and summarises CT genes main characteristics. Several visualisation functions allow to explore their expression in different types of tissues and cancer cells, or to inspect the methylation status of their promoters in normal tissues.
CARD is a reference-based deconvolution method that estimates cell type composition in spatial transcriptomics based on cell type specific expression information obtained from a reference scRNA-seq data. A key feature of CARD is its ability to accommodate spatial correlation in the cell type composition across tissue locations, enabling accurate and spatially informed cell type deconvolution as well as refined spatial map construction. CARD relies on an efficient optimization algorithm for constrained maximum likelihood estimation and is scalable to spatial transcriptomics with tens of thousands of spatial locations and tens of thousands of genes.
This package contains the data used in the vignette of the cnvGSA package.
This package provides the visualization of bayesian network inferred from gene expression data. The networks are based on enrichment analysis results inferred from packages including clusterProfiler and ReactomePA. The networks between pathways and genes inside the pathways can be inferred and visualized.
This package provides extensive functionality for comparing results obtained by different methods for differential expression analysis of RNAseq data. It also contains functions for simulating count data. Finally, it provides convenient interfaces to several packages for performing the differential expression analysis. These can also be used as templates for setting up and running a user-defined differential analysis workflow within the framework of the package.
The curatedBladderData package provides relevant functions and data for gene expression analysis in patients with bladder cancer.
It fits correlation motif model to multiple studies to detect study specific differential expression patterns.
Strand specific peak-pair calling in ChIP-exo replicates. The cumulative Skellam distribution function is used to detect significant normalised count differences of opposed sign at each DNA strand (peak-pairs). Then, irreproducible discovery rate for overlapping peak-pairs across biological replicates is computed.
ChromDraw is a R package for drawing the schemes of karyotype(s) in the linear and circular fashion. It is possible to visualized cytogenetic marsk on the chromosomes. This tool has own input data format. Input data can be imported from the GenomicRanges data structure. This package can visualized the data in the BED file format. Here is requirement on to the first nine fields of the BED format. Output files format are *.eps and *.svg.
With the development of high-throughput techniques, more and more gene expression analysis tend to replace hybridization-based microarrays with the revolutionary technology.The novel method encodes the category again by employing the rank of samples for each gene in each class. We then consider the correlation coefficient of gene and class with rank of sample and new rank of category. The highest correlation coefficient genes are considered as the feature genes which are most effective to classify the samples.
An easy and fast way to visualize and profile the high-throughput IP data. This package generates the meta gene profile and other profiles. These profiles could provide valuable information for understanding the IP experiment results.
Normalization and centralization of array comparative genomic hybridization (aCGH) data. The algorithm uses an iterative procedure that effectively eliminates the influence of imbalanced copy numbers. This leads to a more reliable assessment of copy number alterations (CNAs).
coMethDMR identifies genomic regions associated with continuous phenotypes by optimally leverages covariations among CpGs within predefined genomic regions. Instead of testing all CpGs within a genomic region, coMethDMR carries out an additional step that selects co-methylated sub-regions first without using any outcome information. Next, coMethDMR tests association between methylation within the sub-region and continuous phenotype using a random coefficient mixed effects model, which models both variations between CpG sites within the region and differential methylation simultaneously.
Logic based ordinary differential equation (ODE) add-on to CellNOptR.
CellTrails is an unsupervised algorithm for the de novo chronological ordering, visualization and analysis of single-cell expression data. CellTrails makes use of a geometrically motivated concept of lower-dimensional manifold learning, which exhibits a multitude of virtues that counteract intrinsic noise of single cell data caused by drop-outs, technical variance, and redundancy of predictive variables. CellTrails enables the reconstruction of branching trajectories and provides an intuitive graphical representation of expression patterns along all branches simultaneously. It allows the user to define and infer the expression dynamics of individual and multiple pathways towards distinct phenotypes.
This package provides tools to convert the output of segmentation analysis using DNAcopy to a matrix structure with overlapping segments as rows and samples as columns so that other computational analyses can be applied to segmented data.
This package is the companion of the `CytoPipeline` package. It provides GUI's (shiny apps) for the visualization of flow cytometry data analysis pipelines that are run with `CytoPipeline`. Two shiny applications are provided, i.e. an interactive flow frame assessment and comparison tool and an interactive scale transformations visualization and adjustment tool.
This package provides R wrappers of several on-target and off-target scoring methods for CRISPR guide RNAs (gRNAs). The following nucleases are supported: SpCas9, AsCas12a, enAsCas12a, and RfxCas13d (CasRx). The available on-target cutting efficiency scoring methods are RuleSet1, Azimuth, DeepHF, DeepCpf1, enPAM+GB, and CRISPRscan. Both the CFD and MIT scoring methods are available for off-target specificity prediction. The package also provides a Lindel-derived score to predict the probability of a gRNA to produce indels inducing a frameshift for the Cas9 nuclease. Note that DeepHF, DeepCpf1 and enPAM+GB are not available on Windows machines.
The CCREPE (Compositionality Corrected by REnormalizaion and PErmutation) package is designed to assess the significance of general similarity measures in compositional datasets. In microbial abundance data, for example, the total abundances of all microbes sum to one; CCREPE is designed to take this constraint into account when assigning p-values to similarity measures between the microbes. The package has two functions: ccrepe: Calculates similarity measures, p-values and q-values for relative abundances of bugs in one or two body sites using bootstrap and permutation matrices of the data. nc.score: Calculates species-level co-variation and co-exclusion patterns based on an extension of the checkerboard score to ordinal data.
Supporting data for the chipenrich package. Includes pre-defined gene sets, gene locus definitions, and mappability estimates.
Datasets to support COPDSexaulDimorphism Package.
consICA implements a data-driven deconvolution method – consensus independent component analysis (ICA) to decompose heterogeneous omics data and extract features suitable for patient diagnostics and prognostics. The method separates biologically relevant transcriptional signals from technical effects and provides information about the cellular composition and biological processes. The implementation of parallel computing in the package ensures efficient analysis of modern multicore systems.
Affymetrix clariomsratht annotation data (chip clariomsrathttranscriptcluster) assembled using data from public repositories.