Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Every research team have their own script for data management, statistics and most importantly hemodynamic indices. The purpose is to standardize scripts utilized in clinical research. The hemodynamic indices can be used in a long-format dataframe, and add both periods of interest (trigger-periods), and delete artifacts with deleter-files. Transfer function analysis (Claassen et al. (2016) <doi:10.1177/0271678X15626425>) and Mx (Czosnyka et al. (1996) <doi:10.1161/01.str.27.10.1829>) can be calculated using this package.
Light-weight functions for computing descriptive statistics in different circular spaces (e.g., 2pi, 180, or 360 degrees), to handle angle-dependent biases, pad circular data, and more. Specifically aimed for psychologists and neuroscientists analyzing circular data. Basic methods are based on Jammalamadaka and SenGupta (2001) <doi:10.1142/4031>, removal of cardinal biases is based on the approach introduced in van Bergen, Ma, Pratte, & Jehee (2015) <doi:10.1038/nn.4150> and Chetverikov and Jehee (2023) <doi:10.1038/s41467-023-43251-w>.
Many modern C/C++ development tools in the clang toolchain, such as clang-tidy or clangd', rely on the presence of a compilation database in JSON format <https://clang.llvm.org/docs/JSONCompilationDatabase.html>. This package temporarily injects additional build flags into the R build process to generate such a compilation database.
Fast categorization of items based on external code data identified by regular expressions. A typical use case considers patient with medically coded data, such as codes from the International Classification of Diseases ('ICD') or the Anatomic Therapeutic Chemical ('ATC') classification system. Functions of the package relies on a triad of objects: (1) case data with unit id:s and possible dates of interest; (2) external code data for corresponding units in (1) and with optional dates of interest and; (3) a classification scheme ('classcodes object) with regular expressions to identify and categorize relevant codes from (2). It is easy to introduce new classification schemes ('classcodes objects) or to use default schemes included in the package. Use cases includes patient categorization based on comorbidity indices such as Charlson', Elixhauser', RxRisk V', or the comorbidity-polypharmacy score (CPS), as well as adverse events after hip and knee replacement surgery.
Dissects a package environment or covr coverage object in order to cross reference tested code with the lines that are evaluated, as well as linking those evaluated lines to the documentation that they are described within. Connecting these three pieces of information provides a mechanism of linking tests to documented behaviors.
This package provides a versatile R package for creating and pricing custom derivatives to suit your financial needs.
Client for the Open Citations Corpus (<http://opencitations.net/>). Includes a set of functions for getting one identifier type from another, as well as getting references and citations for a given identifier.
This package provides functions for calculating the OPTICS Cordillera. The OPTICS Cordillera measures the amount of clusteredness in a numeric data matrix within a distance-density based framework for a given minimum number of points comprising a cluster, as described in Rusch, Hornik, Mair (2018) <doi:10.1080/10618600.2017.1349664>. We provide an R native version with methods for printing, summarizing, and plotting the result.
This package provides tools for working with the International Classification of Diseases ('ICD-10 Chile official MINSAL'/'DEIS v2018). Includes optimized SQL search with SQLite', fuzzy matching of medical terms (Jaro-Winkler), Charlson and Elixhauser comorbidity calculation, WHO ICD-11 API integration, and hierarchical code validation. Data from Centro FIC Chile DEIS <https://deis.minsal.cl/centrofic/>.
Computation of decision intervals (H) and average run lengths (ARL) for CUSUM charts. Details of the method are seen in Hawkins and Olwell (2012): Cumulative sum charts and charting for quality improvement, Springer Science & Business Media.
Deriving skill structures from skill assignment data for courses (sets of learning objects).
This package provides a toolkit for querying Team Cymru <http://team-cymru.org> IP address, Autonomous System Number ('ASN'), Border Gateway Protocol ('BGP'), Bogon and Malware Hash Data Services.
This package provides a set of functions for conducting cognitive diagnostic computerized adaptive testing applications (Chen, 2009) <DOI:10.1007/s11336-009-9123-2>). It includes different item selection rules such us the global discrimination index (Kaplan, de la Torre, and Barrada (2015) <DOI:10.1177/0146621614554650>) and the nonparametric selection method (Chang, Chiu, and Tsai (2019) <DOI:10.1177/0146621618813113>), as well as several stopping rules. Functions for generating item banks and responses are also provided. To guide item bank calibration, model comparison at the item level can be conducted using the two-step likelihood ratio test statistic by Sorrel, de la Torre, Abad and Olea (2017) <DOI:10.1027/1614-2241/a000131>.
An exact and a variational inference for coupled Hidden Markov Models applied to the joint detection of copy number variations.
This package provides a copula based clustering algorithm that finds clusters according to the complex multivariate dependence structure of the data generating process. The updated version of the algorithm is described in Di Lascio, F.M.L. and Giannerini, S. (2019). "Clustering dependent observations with copula functions". Statistical Papers, 60, p.35-51. <doi:10.1007/s00362-016-0822-3>.
This package provides functions to work with directed (asymmetric) and undirected (symmetric) spatial networks. It makes the creation of connectivity matrices easier, i.e. a binary matrix of dimension n x n, where n is the number of nodes (sampling units) indicating the presence (1) or the absence (0) of an edge (link) between pairs of nodes. Different network objects can be produced by chessboard': node list, neighbor list, edge list, connectivity matrix. It can also produce objects that will be used later in Moran's Eigenvector Maps (Dray et al. (2006) <doi:10.1016/j.ecolmodel.2006.02.015>) and Asymetric Eigenvector Maps (Blanchet et al. (2008) <doi:10.1016/j.ecolmodel.2008.04.001>), methods available in the package adespatial (Dray et al. (2023) <https://CRAN.R-project.org/package=adespatial>). This work is part of the FRB-CESAB working group Bridge <https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/bridge/>.
Geospatial data computation is parallelized by grid, hierarchy, or raster files. Based on future (Bengtsson, 2024 <doi:10.32614/CRAN.package.future>) and mirai (Gao et al., 2025 <doi:10.32614/CRAN.package.mirai>) parallel back-ends, terra (Hijmans et al., 2025 <doi:10.32614/CRAN.package.terra>) and sf (Pebesma et al., 2024 <doi:10.32614/CRAN.package.sf>) functions as well as convenience functions in the package can be distributed over multiple threads. The simplest way of parallelizing generic geospatial computation is to start from par_pad_*() functions to par_grid(), par_hierarchy(), or par_multirasters() functions. Virtually any functions accepting classes in terra or sf packages can be used in the three parallelization functions. A common raster-vector overlay operation is provided as a function extract_at(), which uses exactextractr (Baston, 2023 <doi:10.32614/CRAN.package.exactextractr>), with options for kernel weights for summarizing raster values at vector geometries. Other convenience functions for vector-vector operations including simple areal interpolation (summarize_aw()) and summation of exponentially decaying weights (summarize_sedc()) are also provided.
Procedures include Phillips (1995) FMVAR <doi:10.2307/2171721>, Kitamura and Phillips (1997) FMGMM <doi:10.1016/S0304-4076(97)00004-3>, Park (1992) CCR <doi:10.2307/2951679>, and so on. Tests with 1 or 2 structural breaks include Gregory and Hansen (1996) <doi:10.1016/0304-4076(69)41685-7>, Zivot and Andrews (1992) <doi:10.2307/1391541>, and Kurozumi (2002) <doi:10.1016/S0304-4076(01)00106-3>.
This package provides a set of functions that helps you to generate descriptive statistics based on the variable types.
This package creates a 3D data cube view of a RasterStack/Brick, typically a collection/array of RasterLayers (along z-axis) with the same geographical extent (x and y dimensions) and resolution, provided by package raster'. Slices through each dimension (x/y/z), freely adjustable in location, are mapped to the visible sides of the cube. The cube can be freely rotated. Zooming and panning can be used to focus on different areas of the cube.
This package provides a user friendly function crrcbcv to compute bias-corrected variances for competing risks regression models using proportional subdistribution hazards with small-sample clustered data. Four types of bias correction are included: the MD-type bias correction by Mancl and DeRouen (2001) <doi:10.1111/j.0006-341X.2001.00126.x>, the KC-type bias correction by Kauermann and Carroll (2001) <doi:10.1198/016214501753382309>, the FG-type bias correction by Fay and Graubard (2001) <doi:10.1111/j.0006-341X.2001.01198.x>, and the MBN-type bias correction by Morel, Bokossa, and Neerchal (2003) <doi:10.1002/bimj.200390021>.
This package provides tools for storing and managing competition results. Competition is understood as a set of games in which players gain some abstract scores. There are two ways for storing results: in long (one row per game-player) and wide (one row per game with fixed amount of players) formats. This package provides functions for creation and conversion between them. Also there are functions for computing their summary and Head-to-Head values for players. They leverage grammar of data manipulation from dplyr'.
Stan based functions to estimate CAR-MM models. These models allow to estimate Generalised Linear Models with CAR (conditional autoregressive) spatial random effects for spatially and temporally misaligned data, provided a suitable Multiple Membership matrix. The main references are Gramatica, Liverani and Congdon (2023) <doi:10.1214/23-BA1370>, Petrof, Neyens, Nuyts, Nackaerts, Nemery and Faes (2020) <doi:10.1002/sim.8697> and Gramatica, Congdon and Liverani <doi:10.1111/rssc.12480>.
Defines the classes and functions used to simulate and to analyze data sets describing copy number variants and, optionally, sequencing mutations in order to detect clonal subsets. See Zucker et al. (2019) <doi:10.1093/bioinformatics/btz057>.