Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The BayesDLMfMRI package performs statistical analysis for task-based functional magnetic resonance imaging (fMRI) data at both individual and group levels. The analysis to detect brain activation at the individual level is based on modeling the fMRI signal using Matrix-Variate Dynamic Linear Models (MDLM). The analysis for the group stage is based on posterior distributions of the state parameter obtained from the modeling at the individual level. In this way, this package offers several R functions with different algorithms to perform inference on the state parameter to assess brain activation for both individual and group stages. Those functions allow for parallel computation when the analysis is performed for the entire brain as well as analysis at specific voxels when it is required. References: Cardona-Jiménez (2021) <doi:10.1016/j.csda.2021.107297>; Cardona-Jiménez (2021) <arXiv:2111.01318>.
Bandwidth selectors for local linear quantile regression, including cross-validation and plug-in methods. The local linear quantile regression estimate is also implemented.
This package provides tools and code snippets for summarizing nested data, adverse events and REDCap study information.
Parse and read the files that comply with the brain imaging data structure, or BIDS format, see the publication from Gorgolewski, K., Auer, T., Calhoun, V. et al. (2016) <doi:10.1038/sdata.2016.44>. Provides query functions to extract and check the BIDS entity information (such as subject, session, task, etc.) from the file paths and suffixes according to the specification. The package is developed and used in the reproducible analysis and visualization of intracranial electroencephalography, or RAVE', see Magnotti, J. F., Wang, Z., and Beauchamp, M. S. (2020) <doi:10.1016/j.neuroimage.2020.117341>; see citation("bidsr") for details and attributions.
Included here are babel routines for identifying unusual ribosome protected fragment counts given mRNA counts.
This package implements a modified Newton-type algorithm (BSW algorithm) for solving the maximum likelihood estimation problem in fitting a log-binomial model under linear inequality constraints.
This package provides functions to find edges for bibliometric networks like bibliographic coupling network, co-citation network and co-authorship network. The weights of network edges can be calculated according to different methods, depending on the type of networks, the type of nodes, and what you want to analyse. These functions are optimized to be be used on large dataset. The package contains functions inspired by: Leydesdorff, Loet and Park, Han Woo (2017) <doi:10.1016/j.joi.2016.11.007>; Perianes-Rodriguez, Antonio, Ludo Waltman, and Nees Jan Van Eck (2016) <doi:10.1016/j.joi.2016.10.006>; Sen, Subir K. and Shymal K. Gan (1983) <http://nopr.niscair.res.in/handle/123456789/28008>; Shen, Si, Zhu, Danhao, Rousseau, Ronald, Su, Xinning and Wang, Dongbo (2019) <doi:10.1016/j.joi.2019.01.012>; Zhao, Dangzhi and Strotmann, Andreas (2008) <doi:10.1002/meet.2008.1450450292>.
In p >> n settings, full posterior sampling using existing Markov chain Monte Carlo (MCMC) algorithms is highly inefficient and often not feasible from a practical perspective. To overcome this problem, we propose a scalable stochastic search algorithm that is called the Simplified Shotgun Stochastic Search (S5) and aimed at rapidly explore interesting regions of model space and finding the maximum a posteriori(MAP) model. Also, the S5 provides an approximation of posterior probability of each model (including the marginal inclusion probabilities). This algorithm is a part of an article titled "Scalable Bayesian Variable Selection Using Nonlocal Prior Densities in Ultrahigh-dimensional Settings" (2018) by Minsuk Shin, Anirban Bhattacharya, and Valen E. Johnson and "Nonlocal Functional Priors for Nonparametric Hypothesis Testing and High-dimensional Model Selection" (2020+) by Minsuk Shin and Anirban Bhattacharya.
This package implements a backward procedure for single and multiple change point detection proposed by Shin et al. <arXiv:1812.10107>. The backward approach is particularly useful to detect short and sparse signals which is common in copy number variation (CNV) detection.
Multivariate tool for analyzing genome-wide association study results in the form of univariate summary statistics. The goal of bmass is to comprehensively test all possible multivariate models given the phenotypes and datasets provided. Multivariate models are determined by assigning each phenotype to being either Unassociated (U), Directly associated (D) or Indirectly associated (I) with the genetic variant of interest. Test results for each model are presented in the form of Bayes factors, thereby allowing direct comparisons between models. The underlying framework implemented here is based on the modeling developed in "A Unified Framework for Association Analysis with Multiple Related Phenotypes", M. Stephens (2013) <doi:10.1371/journal.pone.0065245>.
This package provides a molecular genetics tool that processes binary data from fragment analysis. It consolidates replicate sample pairs, outputs summary statistics, and produces hierarchical clustering trees and nMDS plots. This package was developed from the publication available here: <doi:10.1016/j.biocontrol.2020.104426>. The GUI version of this package is available on the R Shiny online server at: <https://clarkevansteenderen.shinyapps.io/BINMAT/> or it is accessible via GitHub by typing: shiny::runGitHub("BinMat", "clarkevansteenderen") into the console in R. Two real-world datasets accompany the package: an AFLP dataset of Bunias orientalis samples from Tewes et. al. (2017) <doi:10.1111/1365-2745.12869>, and an ISSR dataset of Nymphaea specimens from Reid et. al. (2021) <doi:10.1016/j.aquabot.2021.103372>. The authors of these publications are thanked for allowing the use of their data.
Implementation of a statistical approach for estimating the joint health effects of multiple concurrent exposures, as described in Bobb et al (2015) <doi:10.1093/biostatistics/kxu058>.
This package performs parametric mediation analysis using the Bayesian g-formula approach for binary and continuous outcomes. The methodology is based on Comment (2018) <doi:10.5281/zenodo.1285275> and a demonstration of its application can be found at Yimer et al. (2022) <doi:10.48550/arXiv.2210.08499>.
Package for Bayesian Variable Selection and Model Averaging in linear models and generalized linear models using stochastic or deterministic sampling without replacement from posterior distributions. Prior distributions on coefficients are from Zellner's g-prior or mixtures of g-priors corresponding to the Zellner-Siow Cauchy Priors or the mixture of g-priors from Liang et al (2008) <DOI:10.1198/016214507000001337> for linear models or mixtures of g-priors from Li and Clyde (2019) <DOI:10.1080/01621459.2018.1469992> in generalized linear models. Other model selection criteria include AIC, BIC and Empirical Bayes estimates of g. Sampling probabilities may be updated based on the sampled models using sampling w/out replacement or an efficient MCMC algorithm which samples models using a tree structure of the model space as an efficient hash table. See Clyde, Ghosh and Littman (2010) <DOI:10.1198/jcgs.2010.09049> for details on the sampling algorithms. Uniform priors over all models or beta-binomial prior distributions on model size are allowed, and for large p truncated priors on the model space may be used to enforce sampling models that are full rank. The user may force variables to always be included in addition to imposing constraints that higher order interactions are included only if their parents are included in the model. This material is based upon work supported by the National Science Foundation under Division of Mathematical Sciences grant 1106891. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
This package provides a random forest variant block forest ('BlockForest') tailored to the prediction of binary, survival and continuous outcomes using block-structured covariate data, for example, clinical covariates plus measurements of a certain omics data type or multi-omics data, that is, data for which measurements of different types of omics data and/or clinical data for each patient exist. Examples of different omics data types include gene expression measurements, mutation data and copy number variation measurements. Block forest are presented in Hornung & Wright (2019). The package includes four other random forest variants for multi-omics data: RandomBlock', BlockVarSel', VarProb', and SplitWeights'. These were also considered in Hornung & Wright (2019), but performed worse than block forest in their comparison study based on 20 real multi-omics data sets. Therefore, we recommend to use block forest ('BlockForest') in applications. The other random forest variants can, however, be consulted for academic purposes, for example, in the context of further methodological developments. Reference: Hornung, R. & Wright, M. N. (2019) Block Forests: random forests for blocks of clinical and omics covariate data. BMC Bioinformatics 20:358. <doi:10.1186/s12859-019-2942-y>.
This package provides functions for modelling microbial inactivation under isothermal or dynamic conditions. The calculations are based on several mathematical models broadly used by the scientific community and industry. Functions enable to make predictions for cases where the kinetic parameters are known. It also implements functions for parameter estimation for isothermal and dynamic conditions. The model fitting capabilities include an Adaptive Monte Carlo method for a Bayesian approach to parameter estimation.
This package provides a comprehensive statistical analysis of the accuracy of blood pressure devices based on the method of AAMI/ANSI SP10 standards developed by the AAMI Sphygmomanometer Committee for indirect measurement of blood pressure, incorporated into IS0 81060-2. The bpAcc package gives the exact probability of accepting a device D derived from the join distribution of the sample standard deviation and a non-linear transformation of the sample mean for a specified sample size introduced by Chandel et al. (2023) and by the Association for the Advancement of Medical Instrumentation (2003, ISBN:1-57020-183-8).
Bayesian variable selection methods for analyzing the structure of a Markov random field model for a network of binary and/or ordinal variables.
Compose and send out responsive HTML email messages that render perfectly across a range of email clients and device sizes. Helper functions let the user insert embedded images, web link buttons, and ggplot2 plot objects into the message body. Messages can be sent through an SMTP server, through the Posit Connect service, or through the Mailgun API service <https://www.mailgun.com/>.
Fully Bayesian Classification with a subset of high-dimensional features, such as expression levels of genes. The data are modeled with a hierarchical Bayesian models using heavy-tailed t distributions as priors. When a large number of features are available, one may like to select only a subset of features to use, typically those features strongly correlated with the response in training cases. Such a feature selection procedure is however invalid since the relationship between the response and the features has be exaggerated by feature selection. This package provides a way to avoid this bias and yield better-calibrated predictions for future cases when one uses F-statistic to select features.
Fits boundary line models to datasets as proposed by Webb (1972) <doi:10.1080/00221589.1972.11514472> and makes statistical inferences about their parameters. Provides additional tools for testing datasets for evidence of boundary presence and selecting initial starting values for model optimization prior to fitting the boundary line models. It also includes tools for conducting post-hoc analyses such as predicting boundary values and identifying the most limiting factor (Miti, Milne, Giller, Lark (2024) <doi:10.1016/j.fcr.2024.109365>). This ensures a comprehensive analysis for datasets that exhibit upper boundary structures.
This package provides functions for behavior genetics analysis, including variance component model identification [Hunter et al. (2021) <doi:10.1007/s10519-021-10055-x>], calculation of relatedness coefficients using path-tracing methods [Wright (1922) <doi:10.1086/279872>; McArdle & McDonald (1984) <doi:10.1111/j.2044-8317.1984.tb00802.x>], inference of relatedness, pedigree conversion, and simulation of multi-generational family data [Lyu et al. (2024) <doi:10.1101/2024.12.19.629449>]. For a full overview, see [Garrison et al. (2024) <doi:10.21105/joss.06203>].
Typically, models in R exist in memory and can be saved via regular R serialization. However, some models store information in locations that cannot be saved using R serialization alone. The goal of bundle is to provide a common interface to capture this information, situate it within a portable object, and restore it for use in new settings.
Simulation and visualization depth-dependent integrated visual fields. Visual fields are measured monocularly at a single depth, yet real-life activities involve predominantly binocular vision at multiple depths. The package provides functions to simulate and visualize binocular visual field impairment in a depth-dependent fashion from monocular visual field results based on Ping Liu, Allison McKendrick, Anna Ma-Wyatt, Andrew Turpin (2019) <doi:10.1167/tvst.9.3.8>. At each location and depth plane, sensitivities are linearly interpolated from corresponding locations in monocular visual field and returned as the higher value of the two. Its utility is demonstrated by evaluating DD-IVF defects associated with 12 glaucomatous archetypes of 24-2 visual field pattern in the included shiny apps.