Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods for the group testing identification problem: 1) Operating characteristics (e.g., expected number of tests) for commonly used hierarchical and array-based algorithms, and 2) Optimal testing configurations for these same algorithms. Methods for the group testing estimation problem: 1) Estimation and inference procedures for an overall prevalence, and 2) Regression modeling for commonly used hierarchical and array-based algorithms.
This package provides a C++ library for Bayesian modeling, with an emphasis on Markov chain Monte Carlo. Although boom contains a few R utilities (mainly plotting functions), its primary purpose is to install the BOOM C++ library on your system so that other packages can link against it.
An interface to the Bayesian Weighted Sums model implemented in RStan'. It estimates the summed effect of multiple, often moderately to highly correlated, continuous predictors. Its applications can be found in analysis of exposure mixtures. The model was proposed by Hamra, Maclehose, Croen, Kauffman, and Newschaffer (2021) <doi:10.3390/ijerph18041373>. This implementation includes an extension to model binary outcome.
Estimates cumulative history for time-series for continuously viewed bistable perceptual rivalry displays. Computes cumulative history via a homogeneous first order differential process. I.e., it assumes exponential growth/decay of the history as a function time and perceptually dominant state, Pastukhov & Braun (2011) <doi:10.1167/11.10.12>. Supports Gamma, log normal, and normal distribution families. Provides a method to compute history directly and example of using the computation on a custom Stan code.
This package implements the Bayesian FDR control described by Newton et al. (2004), <doi:10.1093/biostatistics/5.2.155>. Allows optimisation and visualisation of expected error rates based on tail posterior probability tests. Based on code written by Catalina Vallejos for BASiCS, see Beyond comparisons of means: understanding changes in gene expression at the single-cell level Vallejos et al. (2016) <doi:10.1186/s13059-016-0930-3>.
This package implements biplot (2d and 3d) of multivariate data based on principal components analysis and diagnostic tools of the quality of the reduction.
Usually, it is difficult to plot choropleth maps for Bangladesh in R'. The bangladesh package provides ready-to-use shapefiles for different administrative regions of Bangladesh (e.g., Division, District, Upazila, and Union). This package helps users to draw thematic maps of administrative regions of Bangladesh easily as it comes with the sf objects for the boundaries. It also provides functions allowing users to efficiently get specific area maps and center coordinates for regions. Users can also search for a specific area and calculate the centroids of those areas.
This package provides a family of novel beta mixture models (BMMs) has been developed by Majumdar et al. (2022) <doi:10.48550/arXiv.2211.01938> to appositely model the beta-valued cytosine-guanine dinucleotide (CpG) sites, to objectively identify methylation state thresholds and to identify the differentially methylated CpG (DMC) sites using a model-based clustering approach. The family of beta mixture models employs different parameter constraints applicable to different study settings. The EM algorithm is used for parameter estimation, with a novel approximation during the M-step providing tractability and ensuring computational feasibility.
The goal of BayesPower is to provide tools for Bayesian sample size determination and power analysis across a range of common hypothesis testing scenarios using Bayes factors. The main function, BayesPower_BayesFactor(), launches an interactive shiny application for performing these analyses. The application also provides command-line code for reproducibility. Details of the methods are described in the tutorial by Wong, Pawel, and Tendeiro (2025) <doi:10.31234/osf.io/pgdac_v1>.
Generate urls and hyperlinks to commonly used biological databases and resources based on standard identifiers. This is primarily useful when writing dynamic reports that reference things like gene symbols in text or tables, allowing you to, for example, convert gene identifiers to hyperlinks pointing to their entry in the NCBI Gene database. Currently supports NCBI Gene, PubMed', Gene Ontology, KEGG', CRAN and Bioconductor.
Selection of informative features like genes, transcripts, RNA seq, etc. using Bootstrap Maximum Relevance and Minimum Redundancy technique from a given high dimensional genomic dataset. Informative gene selection involves identification of relevant genes and removal of redundant genes as much as possible from a large gene space. Main applications in high-dimensional expression data analysis (e.g. microarray data, NGS expression data and other genomics and proteomics applications).
The purpose of this package is to fit the three Spatial Econometric Models proposed in Anselin (1988, ISBN:9024737354) in the homoscedastic and the heteroscedatic case. The fit is made through MCMC algorithms and observational working variables approach.
Can be used to read and write a fwf with an accompanying Blaise datamodel. Blaise is the software suite built by Statistics Netherlands (CBS). It is essentially a way to write and collect surveys and perform statistical analysis on the data. It stores its data in fixed width format with an accompanying metadata file, this is the Blaise format. The package automatically interprets this metadata and reads the file into an R dataframe. When supplying a datamodel for writing, the dataframe will be automatically converted to that format and checked for compatibility. Supports dataframes, tibbles and LaF objects. For more information about Blaise', see <https://blaise.com/products/general-information>.
This package provides a Bayesian version of the analysis of variance based on a three-component Gaussian mixture for which a Gibbs sampler produces posterior draws. For details about the Bayesian ANOVA based on Gaussian mixtures, see Kelter (2019) <arXiv:1906.07524>.
This package provides an alternative approach to aoristic analyses for archaeological datasets by fitting Bayesian parametric growth models and non-parametric random-walk Intrinsic Conditional Autoregressive (ICAR) models on time frequency data (Crema (2024)<doi:10.1111/arcm.12984>). It handles event typo-chronology based timespans defined by start/end date as well as more complex user-provided vector of probabilities.
This package contains several Bayesian models for data analysis of psychological tests. A user friendly interface for these models should enable students and researchers to perform professional level Bayesian data analysis without advanced knowledge in programming and Bayesian statistics. This package is based on the Stan platform (Carpenter et el. 2017 <doi:10.18637/jss.v076.i01>).
Simulation, estimation and forecasting of first-order Beta-Skew-t-EGARCH models with leverage (one-component, two-component, skewed versions).
Full Bayesian estimation of Multidimensional Generalized Graded Unfolding Model (MGGUM) using rstan (See Stan Development Team (2020) <https://mc-stan.org/>). Functions are provided for estimation, result extraction, model fit statistics, and plottings.
Creating, rendering and writing BPMN diagrams <https://www.bpmn.org/>. Functionalities can be used to visualize and export BPMN diagrams created using the pm4py and bupaRminer packages. Part of the bupaR ecosystem.
This package implements v2 of the B.L.S. API for requests of survey information and time series data through 3-tiered API that allows users to interact with the raw API directly, create queries through a functional interface, and re-shape the data structures returned to fit common uses. The API definition is located at: <https://www.bls.gov/developers/api_signature_v2.htm>.
Allows to compare the goodness of fit of Benford's and Blondeau Da Silva's digit distributions in a dataset. It is used to check whether the data distribution is consistent with theoretical distributions highlighted by Blondeau Da Silva or not (through the dat.distr() function): this ideal theoretical distribution must be at least approximately followed by the data for the use of Blondeau Da Silva's model to be well-founded. It also enables to plot histograms of digit distributions, both observed in the dataset and given by the two theoretical approaches (with the digit.ditr() function). Finally, it proposes to quantify the goodness of fit via Pearson's chi-squared test (with the chi2() function).
Facilitates some of the analyses performed in studies of behavioral economic discounting. The package supports scoring of the 27-Item Monetary Choice Questionnaire (see Kaplan et al., 2016; <doi:10.1007/s40614-016-0070-9>), calculating k values (Mazur's simple hyperbolic and exponential) using nonlinear regression, calculating various Area Under the Curve (AUC) measures, plotting regression curves for both fit-to-group and two-stage approaches, checking for unsystematic discounting (Johnson & Bickel, 2008; <doi:10.1037/1064-1297.16.3.264>) and scoring of the minute discounting task (see Koffarnus & Bickel, 2014; <doi:10.1037/a0035973>) using the Qualtrics 5-trial discounting template (see the Qualtrics Minute Discounting User Guide; <doi:10.13140/RG.2.2.26495.79527>), which is also available as a .qsf file in this package.
Read and process brand.yml YAML files. brand.yml is a simple, portable YAML file that codifies your company's brand guidelines into a format that can be used by Quarto', Shiny and R tooling to create branded outputs. Maintain unified, branded theming for web applications to printed reports to dashboards and presentations with a consistent look and feel.
This package provides tools to calibrate, validate, and make predictions with the General Unified Threshold model of Survival adapted for Bee species. The model is presented in the publication from Baas, J., Goussen, B., Miles, M., Preuss, T.G., Roessing, I. (2022) <doi:10.1002/etc.5423> and Baas, J., Goussen, B., Taenzler, V., Roeben, V., Miles, M., Preuss, T.G., van den Berg, S., Roessink, I. (2024) <doi:10.1002/etc.5871>, and is based on the GUTS framework Jager, T., Albert, C., Preuss, T.G. and Ashauer, R. (2011) <doi:10.1021/es103092a>. The authors are grateful to Bayer A.G. for its financial support.