Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Spatial regression models with compositional responses using the alpha--transformation. Relevant papers include: Tsagris M. (2025), <doi:10.48550/arXiv.2510.12663>, Tsagris M. (2015), <https://soche.cl/chjs/volumes/06/02/Tsagris(2015).pdf>, Tsagris M.T., Preston S. and Wood A.T.A. (2011), <doi:10.48550/arXiv.1106.1451>.
Get description of images from Clarifai API. For more information, see <http://clarifai.com>. Clarifai uses a large deep learning cloud to come up with descriptive labels of the things in an image. It also provides how confident it is about each of the labels.
Useful libraries for building a Java based GUI under R are provided.
The Cauchy Process can model pulsed continuous trait evolution on phylogenies. The likelihood is tractable, and is used for parameter inference and ancestral trait reconstruction. See Bastide and Didier (2023) <doi:10.1093/sysbio/syad053>.
General functions for convolutions of data. Moving average, running median, and other filters are available. Bibliography regarding the functions can be found in the following text. Richard G. Brereton (2003) <ISBN:9780471489771>.
An efficient cross-validated approach for covariance matrix estimation, particularly useful in high-dimensional settings. This method relies upon the theory of high-dimensional loss-based covariance matrix estimator selection developed by Boileau et al. (2022) <doi:10.1080/10618600.2022.2110883> to identify the optimal estimator from among a prespecified set of candidates.
This package provides access to six fundamental statistics that can be used for the purpose of combination p-values. All methods used can referenced here: Heard & Rubin-Delanchy (2017) <arXiv:1707.06897>.
This package provides methods for learning causal relationships among a set of foreground variables X based on signals from a (potentially much larger) set of background variables Z, which are known non-descendants of X. The confounder blanket learner (CBL) uses sparse regression techniques to simultaneously perform many conditional independence tests, with complementary pairs stability selection to guarantee finite sample error control. CBL is sound and complete with respect to a so-called "lazy oracle", and works with both linear and nonlinear systems. For details, see Watson & Silva (2022) <arXiv:2205.05715>.
P-values and no/lowest observed (adverse) effect concentration values derived from the closure principle computational approach test (Lehmann, R. et al. (2015) <doi:10.1007/s00477-015-1079-4>) are provided. The package contains functions to generate intersection hypotheses according to the closure principle (Bretz, F., Hothorn, T., Westfall, P. (2010) <doi:10.1201/9781420010909>), an implementation of the computational approach test (Ching-Hui, C., Nabendu, P., Jyh-Jiuan, L. (2010) <doi:10.1080/03610918.2010.508860>) and the combination of both, that is, the closure principle computational approach test.
Provide standard tables, listings, and graphs (TLGs) libraries used in clinical trials. This package implements a structure to reformat the data with dunlin', create reporting tables using rtables and tern with standardized input arguments to enable quick generation of standard outputs. In addition, it also provides comprehensive data checks and script generation functionality.
This package implements a new method ClussCluster descried in Ge Jiang and Jun Li, "Simultaneous Detection of Clusters and Cluster-Specific Genes in High-throughput Transcriptome Data" (Unpublished). Simultaneously perform clustering analysis and signature gene selection on high-dimensional transcriptome data sets. To do so, ClussCluster incorporates a Lasso-type regularization penalty term to the objective function of K- means so that cell-type-specific signature genes can be identified while clustering the cells.
An investigative tool designed to help users visualize correlations between variables in their datasets. This package aims to provide an easy and effective way to explore and visualize these correlations, making it easier to interpret and communicate results.
Statistical summary of STRUCTURE output. STRUCTURE is a K-means clustering method for inferring population structure and assigning individuals to populations using genetic data. Pritchard JK, Stephens M, Donnelly PJ (2000) <DOI:10.1093/genetics/155.2.945>. <https://web.stanford.edu/group/pritchardlab/structure.html>.
Loads and creates spatial data, including layers and tools that are relevant to the activities of the Commission for the Conservation of Antarctic Marine Living Resources. Provides two categories of functions: load functions and create functions. Load functions are used to import existing spatial layers from the online CCAMLR GIS such as the ASD boundaries. Create functions are used to create layers from user data such as polygons and grids.
The Core Microbiome refers to the group of microorganisms that are consistently present in a particular environment, habitat, or host species. These microorganisms play a crucial role in the functioning and stability of that ecosystem. Identifying these microorganisms can contribute to the emerging field of personalized medicine. The CoreMicrobiomeR is designed to facilitate the identification, statistical testing, and visualization of this group of microorganisms.This package offers three key functions to analyze and visualize microbial community data. This package has been developed based on the research papers published by Pereira et al.(2018) <doi:10.1186/s12864-018-4637-6> and Beule L, Karlovsky P. (2020) <doi:10.7717/peerj.9593>.
This package provides the source and examples for James P. Howard, II, "Computational Methods for Numerical Analysis with R," <https://jameshoward.us/cmna/>, a book on numerical methods in R.
Implementation of the empirical method to derive log2 counts per million (CPM) cutoff to filter out lowly expressed genes using ERCC spike-ins as described in Goll and Bosinger et.al (2022)<doi:10.1101/2022.06.23.497396>. This package utilizes the synthetic mRNA control pairs developed by the External RNA Controls Consortium (ERCC) (ERCC 1 / ERCC 2) that are spiked into sample pairs at known ratios at various absolute abundances. The relationship between the observed and expected fold changes is then used to empirically determine an optimal log2 CPM cutoff for filtering out lowly expressed genes.
Graphically display the (causal) effect of a continuous variable on a time-to-event outcome using multiple different types of plots based on g-computation. Those functions include, among others, survival area plots, survival contour plots, survival quantile plots and 3D surface plots. Due to the use of g-computation, all plot allow confounder-adjustment naturally. For details, see Robin Denz, Nina Timmesfeld (2023) <doi:10.1097/EDE.0000000000001630>.
Compute Chinese capital stocks in provinces level, based on Zhang (2008) <DOI:10.1080/14765280802028302>.
This package provides a compositional mediation model for continuous outcome and binary outcomes to deal with mediators that are compositional data. Lin, Ziqiang et al. (2022) <doi:10.1016/j.jad.2021.12.019>.
Puzzle game that can be played in the R console. Help the alien to find the ship.
Iterate and repel visually similar colors away in various ggplot2 plots. When many groups are plotted at the same time on multiple axes, for instance stacked bars or scatter plots, effectively ordering colors becomes difficult. This tool iterates through color combinations to find the best solution to maximize visual distinctness of nearby groups, so plots are more friendly toward colorblind users. This is achieved by two distance measurements, distance between groups within the plot, and CIELAB color space distances between colors as described in Carter et al., (2018) <doi:10.25039/TR.015.2018>.
The caRamel optimizer has been developed to meet the requirement for an automatic calibration procedure that delivers a family of parameter sets that are optimal with regard to a multi-objective target (Monteil et al. <doi:10.5194/hess-24-3189-2020>).
Estimation and inference methods for the continuous threshold expectile regression. It can fit the continuous threshold expectile regression and test the existence of change point, for the paper, "Feipeng Zhang and Qunhua Li (2016). A continuous threshold expectile regression, submitted.".