Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Use emailjs API easily in R'. This package is not official. <https://www.emailjs.com/docs/rest-api/send/>. You can send e-mail with emailjs with function, based on httr'. You can also make a shiny ui and server function. It can be used for making feedback form, inquiry, and so on.
This package provides tools for exploratory analysis of tabular data using colour highlighting. Highlighting is displayed in any console supporting ANSI colours, and can be converted to HTML', typst', latex and SVG'. quarto and rmarkdown rendering are directly supported. It is also possible to add colour to regular expression matches and highlight differences between two arbitrary R objects.
Implementation of the Mode Jumping Markov Chain Monte Carlo algorithm from Hubin, A., Storvik, G. (2018) <doi:10.1016/j.csda.2018.05.020>, Genetically Modified Mode Jumping Markov Chain Monte Carlo from Hubin, A., Storvik, G., & Frommlet, F. (2020) <doi:10.1214/18-BA1141>, Hubin, A., Storvik, G., & Frommlet, F. (2021) <doi:10.1613/jair.1.13047>, and Hubin, A., Heinze, G., & De Bin, R. (2023) <doi:10.3390/fractalfract7090641>, and Reversible Genetically Modified Mode Jumping Markov Chain Monte Carlo from Hubin, A., Frommlet, F., & Storvik, G. (2021) <doi:10.48550/arXiv.2110.05316>, which allow for estimating posterior model probabilities and Bayesian model averaging across a wide set of Bayesian models including linear, generalized linear, generalized linear mixed, generalized nonlinear, generalized nonlinear mixed, and logic regression models.
Evaluates the empirical characteristic function of univariate and multivariate samples. This package uses RcppArmadillo for fast evaluation. It is also possible to export the code to be used in other packages at C++ level.
This package provides a simple interface to search and retrieve scientific articles from the SciELO (Scientific Electronic Library Online) database <https://scielo.org>. It allows querying, filtering, and visualizing results in an interactive table.
Analyses EuFMDiS output files in a Shiny App. The distributions of relevant output parameters are described in form of tables (quantiles) and plots. The App is called using eufmdis.adapt::run_adapt().
Testing for and dating periods of explosive dynamics (exuberance) in time series using the univariate and panel recursive unit root tests proposed by Phillips et al. (2015) <doi:10.1111/iere.12132> and Pavlidis et al. (2016) <doi:10.1007/s11146-015-9531-2>.The recursive least-squares algorithm utilizes the matrix inversion lemma to avoid matrix inversion which results in significant speed improvements. Simulation of a variety of periodically-collapsing bubble processes. Details can be found in Vasilopoulos et al. (2022) <doi:10.18637/jss.v103.i10>.
This package provides set of functions aimed at epidemiologists. The package includes commands for measures of association and impact for case control studies and cohort studies. It may be particularly useful for outbreak investigations including univariable analysis and stratified analysis. The functions for cohort studies include the CS(), CSTable() and CSInter() commands. The functions for case control studies include the CC(), CCTable() and CCInter() commands. References - Cornfield, J. 1956. A statistical problem arising from retrospective studies. In Vol. 4 of Proceedings of the Third Berkeley Symposium, ed. J. Neyman, 135-148. Berkeley, CA - University of California Press. Woolf, B. 1955. On estimating the relation between blood group disease. Annals of Human Genetics 19 251-253. Reprinted in Evolution of Epidemiologic Ideas Annotated Readings on Concepts and Methods, ed. S. Greenland, pp. 108-110. Newton Lower Falls, MA Epidemiology Resources. Gilles Desve & Peter Makary, 2007. CSTABLE Stata module to calculate summary table for cohort study Statistical Software Components S456879, Boston College Department of Economics. Gilles Desve & Peter Makary, 2007. CCTABLE Stata module to calculate summary table for case-control study Statistical Software Components S456878, Boston College Department of Economics.
This package provides methods for fitting various extreme value distributions with parameters of generalised additive model (GAM) form are provided. For details of distributions see Coles, S.G. (2001) <doi:10.1007/978-1-4471-3675-0>, GAMs see Wood, S.N. (2017) <doi:10.1201/9781315370279>, and the fitting approach see Wood, S.N., Pya, N. & Safken, B. (2016) <doi:10.1080/01621459.2016.1180986>. Details of how evgam works and various examples are given in Youngman, B.D. (2022) <doi:10.18637/jss.v103.i03>.
This package provides a collection of advanced tools, methods and models specifically designed for analyzing different types of ecological networks - especially antagonistic (food webs, host-parasite), mutualistic (plant-pollinator, plant-fungus, etc) and competitive networks, as well as their variability in time and space. Statistical models are developed to describe and understand the mechanisms that determine species interactions, and to decipher the organization of these ecological networks (Ohlmann et al. (2019) <doi:10.1111/ele.13221>, Gonzalez et al. (2020) <doi:10.1101/2020.04.02.021691>, Miele et al. (2021) <doi:10.48550/arXiv.2103.10433>, Botella et al (2021) <doi:10.1111/2041-210X.13738>).
Various recursive two-stage models to address the endogeneity issue of treatment variables in observational study or mediators in experiments. The details of the models are discussed in Peng (2023) <doi:10.1287/isre.2022.1113>.
Fixation and saccade detection in eye movement recordings. This package implements a dispersion-based algorithm (I-DT) proposed by Salvucci & Goldberg (2000) which detects fixation duration and position.
Estimates RxC (R by C) vote transfer matrices (ecological contingency tables) from aggregate data by simultaneously minimizing Euclidean row-standardized unit-to-global distances. Acknowledgements: The authors wish to thank Generalitat Valenciana, Consellerà a de Educación, Cultura, Universidades y Empleo (grant CIAICO/2023/031) for supporting this research.
This package provides functions for evaluating and visualizing ecological assessment procedures for surface waters containing physical, chemical and biological assessments in the form of value functions.
This package provides functions of five estimation method for ED50 (50 percent effective dose) are provided, and they are respectively Dixon-Mood method (1948) <doi:10.2307/2280071>, Choi's original turning point method (1990) <doi:10.2307/2531453> and it's modified version given by us, as well as logistic regression and isotonic regression. Besides, the package also supports comparison between two estimation results.
Automated compound deconvolution, alignment across samples, and identification of metabolites by spectral library matching in Gas Chromatography - Mass spectrometry (GC-MS) untargeted metabolomics. Outputs a table with compound names, matching scores and the integrated area of the compound for each sample. Package implementation is described in Domingo-Almenara et al. (2016) <doi:10.1021/acs.analchem.6b02927>.
Simulation of Electric Vehicles charging sessions using Gaussian models, together with time-series power demand calculations.
The R package proposes extreme value index estimators for heavy tailed models by mean of order p <DOI:10.1016/j.csda.2012.07.019>, peaks over random threshold <DOI:10.57805/revstat.v4i3.37> and a bias-reduced estimator <DOI:10.1080/00949655.2010.547196>. The package also computes moment, generalised Hill <DOI:10.2307/3318416> and mixed moment estimates for the extreme value index. High quantiles and value at risk estimators based on these estimators are implemented.
Addresses tasks along the pipeline from raw data to analysis and visualization for eye-tracking data. Offers several popular types of analyses, including linear and growth curve time analyses, onset-contingent reaction time analyses, as well as several non-parametric bootstrapping approaches. For references to the approach see Mirman, Dixon & Magnuson (2008) <doi:10.1016/j.jml.2007.11.006>, and Barr (2008) <doi:10.1016/j.jml.2007.09.002>.
This comprehensive toolkit for Distributed Elliptical model is designated as "ELIC" (The LIC for Distributed Elliptical Model Analysis) analysis. It is predicated on the assumption that the error term adheres to a Elliptical distribution. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02664763.2022.2053949>.
Modular implementation of the Differential Evolution algorithm for experimenting with different types of operators.
Access data related to the European union from GISCO <https://ec.europa.eu/eurostat/web/gisco>, the Geographic Information System of the European Commission, via its rest API at <https://gisco-services.ec.europa.eu>. This package tries to make it easier to get these data into R.
This package implements stochastic simulations of community assembly (ecological diversification) using customizable ecospace frameworks (functional trait spaces). Provides a wrapper to calculate common ecological disparity and functional ecology statistical dynamics as a function of species richness. Functions are written so they will work in a parallel-computing environment.
This package contains methods for the estimation of Shannon's entropy, variants of Renyi's entropy, mutual information, Kullback-Leibler divergence, and generalized Simpson's indices. The estimators used have a bias that decays exponentially fast.