Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fits keyword assisted topic models (keyATM) using collapsed Gibbs samplers. The keyATM combines the latent dirichlet allocation (LDA) models with a small number of keywords selected by researchers in order to improve the interpretability and topic classification of the LDA. The keyATM can also incorporate covariates and directly model time trends. The keyATM is proposed in Eshima, Imai, and Sasaki (2024) <doi:10.1111/ajps.12779>.
Online, Semi-online, and Offline K-medians algorithms are given. For both methods, the algorithms can be initialized randomly or with the help of a robust hierarchical clustering. The number of clusters can be selected with the help of a penalized criterion. We provide functions to provide robust clustering. Function gen_K() enables to generate a sample of data following a contaminated Gaussian mixture. Functions Kmedians() and Kmeans() consists in a K-median and a K-means algorithms while Kplot() enables to produce graph for both methods. Cardot, H., Cenac, P. and Zitt, P-A. (2013). "Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm". Bernoulli, 19, 18-43. <doi:10.3150/11-BEJ390>. Cardot, H. and Godichon-Baggioni, A. (2017). "Fast Estimation of the Median Covariation Matrix with Application to Online Robust Principal Components Analysis". Test, 26(3), 461-480 <doi:10.1007/s11749-016-0519-x>. Godichon-Baggioni, A. and Surendran, S. "A penalized criterion for selecting the number of clusters for K-medians" <arXiv:2209.03597> Vardi, Y. and Zhang, C.-H. (2000). "The multivariate L1-median and associated data depth". Proc. Natl. Acad. Sci. USA, 97(4):1423-1426. <doi:10.1073/pnas.97.4.1423>.
This package implements the kernel method of test equating as defined in von Davier, A. A., Holland, P. W. and Thayer, D. T. (2004) <doi:10.1007/b97446> and Andersson, B. and Wiberg, M. (2017) <doi:10.1007/s11336-016-9528-7> using the CB, EG, SG, NEAT CE/PSE and NEC designs, supporting Gaussian, logistic and uniform kernels and unsmoothed and pre-smoothed input data.
Caches and then connects to a sqlite database containing half a million pediatric drug safety signals. The database is part of a family of resources catalogued at <https://nsides.io>. The database contains 17 tables where the description table provides a map between the fields the field's details. The database was created by Nicholas Giangreco during his PhD thesis which you can read in Giangreco (2022) <doi:10.7916/d8-5d9b-6738>. The observations are from the Food and Drug Administration's Adverse Event Reporting System. Generalized additive models estimated drug effects across child development stages for the occurrence of an adverse event when exposed to a drug compared to other drugs. Read more at the methods detailed in Giangreco (2022) <doi:10.1016/j.medj.2022.06.001>.
This is a stochastic framework that combines biochemical reaction networks with extended Kalman filter and Rauch-Tung-Striebel smoothing. This framework allows to investigate the dynamics of cell differentiation from high-dimensional clonal tracking data subject to measurement noise, false negative errors, and systematically unobserved cell types. Our tool can provide statistical support to biologists in gene therapy clonal tracking studies for a deeper understanding of clonal reconstitution dynamics. Further details on the methods can be found in L. Del Core et al., (2022) <doi:10.1101/2022.07.08.499353>.
This package contains kidney care oriented functions. Current version contains functions for calculation of: - Estimated glomerular filtration rate by CKD-EPI (2021 and 2009), MDRD, CKiD, FAS, EKFC, etc. - Kidney Donor Risk Index and Kidney Donor Profile Index for kidney transplant donors. - Citation: Bikbov B. kidney.epi: Kidney-Related Functions for Clinical and Epidemiological Research. Scientific-Tools.Org, <https://Scientific-Tools.Org>. <doi:10.32614/CRAN.package.kidney.epi>.
This package provides a novel implementation that solves the linear distance weighted discrimination and the kernel distance weighted discrimination. Reference: Wang and Zou (2018) <doi:10.1111/rssb.12244>.
Tests the homogeneity of intraclass kappa statistics obtained from independent studies or a stratified study with binary results. It is desired to compare the kappa statistics obtained in multi-center studies or in a single stratified study to give a common or summary kappa using all available information. If the homogeneity test of these kappa statistics is not rejected, then it is possible to make inferences over a single kappa statistic that summarizes all the studies. Muammer Albayrak, Kemal Turhan, Yasemin Yavuz, Zeliha Aydin Kasap (2019) <doi:10.1080/03610918.2018.1538457> Jun-mo Nam (2003) <doi:10.1111/j.0006-341X.2003.00118.x> Jun-mo Nam (2005) <doi:10.1002/sim.2321>Mousumi Banerjee, Michelle Capozzoli, Laura McSweeney,Debajyoti Sinha (1999) <doi:10.2307/3315487> Allan Donner, Michael Eliasziw, Neil Klar (1996) <doi:10.2307/2533154>.
An implementation of a simple and highly optimized ordinary kriging algorithm to plot geographical data.
This package provides a weighting approach that employs kernels to make one group have a similar distribution to another group on covariates. This method matches not only means or marginal distributions but also higher-order transformations implied by the choice of kernel. kbal is applicable to both treatment effect estimation and survey reweighting problems. Based on Hazlett, C. (2020) "Kernel Balancing: A flexible non-parametric weighting procedure for estimating causal effects." Statistica Sinica. <https://www.researchgate.net/publication/299013953_Kernel_Balancing_A_flexible_non-parametric_weighting_procedure_for_estimating_causal_effects>.
API Wrapper to use Korea Investment & Securities (KIS) trading system that provides various financial services like stock price check, orders and balance check <https://apiportal.koreainvestment.com/>.
In self-reported or anonymised data the user often encounters heaped data, i.e. data which are rounded (to a possibly different degree of coarseness). While this is mostly a minor problem in parametric density estimation the bias can be very large for non-parametric methods such as kernel density estimation. This package implements a partly Bayesian algorithm treating the true unknown values as additional parameters and estimates the rounding parameters to give a corrected kernel density estimate. It supports various standard bandwidth selection methods. Varying rounding probabilities (depending on the true value) and asymmetric rounding is estimable as well: Gross, M. and Rendtel, U. (2016) (<doi:10.1093/jssam/smw011>). Additionally, bivariate non-parametric density estimation for rounded data, Gross, M. et al. (2016) (<doi:10.1111/rssa.12179>), as well as data aggregated on areas is supported.
An efficient algorithm inspired by majorization-minimization principle for solving the entire solution path of a flexible nonparametric expectile regression estimator constructed in a reproducing kernel Hilbert space.
This package provides functions for analysing eye tracking data, including event detection, visualizations and area of interest (AOI) based analyses. The package includes implementations of the IV-T, I-DT, adaptive velocity threshold, and Identification by two means clustering (I2MC) algorithms. See separate documentation for each function. The principles underlying I-VT and I-DT algorithms are described in Salvucci & Goldberg (2000,\doi10.1145/355017.355028). Two-means clustering is described in Hessels et al. (2017, \doi10.3758/s13428-016-0822-1). The adaptive velocity threshold algorithm is described in Nyström & Holmqvist (2010,\doi10.3758/BRM.42.1.188). See a demonstration in the URL.
This package provides a collection of functions for analyzing data typically collected or used by behavioral scientists. Examples of the functions include a function that compares groups in a factorial experimental design, a function that conducts two-way analysis of variance (ANOVA), and a function that cleans a data set generated by Qualtrics surveys. Some of the functions will require installing additional package(s). Such packages and other references are cited within the section describing the relevant functions. Many functions in this package rely heavily on these two popular R packages: Dowle et al. (2021) <https://CRAN.R-project.org/package=data.table>. Wickham et al. (2021) <https://CRAN.R-project.org/package=ggplot2>.
An implementation of the blocking algorithm KLSH in Steorts, Ventura, Sadinle, Fienberg (2014) <DOI:10.1007/978-3-319-11257-2_20>, which is a k-means variant of locality sensitive hashing. The method is illustrated with examples and a vignette.
This package provides a seamless bridge between keras and the tidymodels frameworks. It allows for the dynamic creation of parsnip model specifications for keras models.
Two main functionalities are provided. One of them is predicting values with k-nearest neighbors algorithm and the other is optimizing the parameters k and d of the algorithm. These are carried out in parallel using multiple threads.
This package provides a spatial smoothing algorithm based on convolutions of finite rectangular kernels that provides sharp resolution in the presence of high levels of noise.
This package provides a new practical method to evaluate whether relationships between two sets of high-dimensional variables are different or not across two conditions. Song, H. and Wu, M.C. (2023) <arXiv:2307.15268>.
Implementations several algorithms for kernel k-means. The default OTQT algorithm is a fast alternative to standard implementations of kernel k-means, particularly in cases with many clusters. For a small number of clusters, the implemented MacQueen method typically performs the fastest. For more details and performance evaluations, see Berlinski and Maitra (2025) <doi:10.1002/sam.70032>.
Aids in identifying the Koeppen-Geiger (KG) climatic zone for a given location. The Koeppen-Geiger climate zones were first published in 1884, as a system to classify regions of the earth by their relative heat and humidity through the year, for the benefit of human health, plant and agriculture and other human activity [1]. This climate zone classification system, applicable to all of the earths surface, has continued to be developed by scientists up to the present day. Recently one of use (FZ) has published updated, higher accuracy KG climate zone definitions [2]. In this package we use these updated high-resolution maps as the data source [3]. We provide functions that return the KG climate zone for a given longitude and lattitude, or for a given United States zip code. In addition the CZUncertainty() function will check climate zones nearby to check if the given location is near a climate zone boundary. In addition an interactive shiny app is provided to define the KG climate zone for a given longitude and lattitude, or United States zip code. Digital data, as well as animated maps, showing the shift of the climate zones are provided on the following website <http://koeppen-geiger.vu-wien.ac.at>. This work was supported by the DOE-EERE SunShot award DE-EE-0007140. [1] W. Koeppen, (2011) <doi:10.1127/0941-2948/2011/105>. [2] F. Rubel and M. Kottek, (2010) <doi:10.1127/0941-2948/2010/0430>. [3] F. Rubel, K. Brugger, K. Haslinger, and I. Auer, (2016) <doi:10.1127/metz/2016/0816>.
This package provides tools for applying Krippendorff's Alpha methodology <DOI:10.1080/19312450709336664>. Both the customary methodology and Hughes methodology <DOI:10.48550/arXiv.2210.13265> are supported, the former being preferred for larger datasets, the latter for smaller datasets. The framework supports common and user-defined distance functions, and can accommodate any number of units, any number of coders, and missingness. Interval estimation can be done in parallel for either methodology.
Multi-modal magnetic resonance imaging ('MRI') data from the Kirby21 reproducibility study <https://www.nitrc.org/projects/multimodal/>, including functional and structural imaging.