Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a set of commands to manage an abstract optimization method. The goal is to provide a building block for a large class of specialized optimization methods. This package manages: the number of variables, the minimum and maximum bounds, the number of non linear inequality constraints, the cost function, the logging system, various termination criteria, etc...
This package implements Bayesian data analyses of balanced repeatability and reproducibility studies with ordinal measurements. Model fitting is based on MCMC posterior sampling with rjags'. Function ordinalRR() directly carries out the model fitting, and this function has the flexibility to allow the user to specify key aspects of the model, e.g., fixed versus random effects. Functions for preprocessing data and for the numerical and graphical display of a fitted model are also provided. There are also functions for displaying the model at fixed (user-specified) parameters and for simulating a hypothetical data set at a fixed (user-specified) set of parameters for a random-effects rater population. For additional technical details, refer to Culp, Ryan, Chen, and Hamada (2018) and cite this Technometrics paper when referencing any aspect of this work. The demo of this package reproduces results from the Technometrics paper.
This package implements the objective Bayesian methodology proposed in Consonni and Deldossi in order to choose the optimal experiment that better discriminate between competing models, see Deldossi and Nai Ruscone (2020) <doi:10.18637/jss.v094.i02>.
Identifies the optimal transformation of a surrogate marker and estimates the proportion of treatment explained (PTE) by the optimally-transformed surrogate at an earlier time point when the primary outcome of interest is a censored time-to-event outcome; details are described in Wang et al (2021) <doi:10.1002/sim.9185>.
Design and analysis of confirmatory adaptive clinical trials using the optimal conditional error framework according to Brannath and Bauer (2004) <doi:10.1111/j.0006-341X.2004.00221.x>. An extension to the optimal conditional error function using interim estimates as described in Brannath and Dreher (2024) <doi:10.48550/arXiv.2402.00814> and functions to ensure that the resulting conditional error function is non-increasing are also available.
An implementation of several functions for feature extraction in ordinal time series datasets. Specifically, some of the features proposed by Weiss (2019) <doi:10.1080/01621459.2019.1604370> can be computed. These features can be used to perform inferential tasks or to feed machine learning algorithms for ordinal time series, among others. The package also includes some interesting datasets containing financial time series. Practitioners from a broad variety of fields could benefit from the general framework provided by otsfeatures'.
Enables the usage of the OpenDota API from <https://www.opendota.com/>, get game lists, and download JSON's of parsed replays from the OpenDota API. Also has functionality to execute own code to extract the specific parts of the JSON file.
Online PCA for multivariate and functional data using perturbation methods, low-rank incremental methods, and stochastic optimization methods.
Analyze repertory grids, a qualitative-quantitative data collection technique devised by George A. Kelly in the 1950s. Today, grids are used across various domains ranging from clinical psychology to marketing. The package contains functions to quantitatively analyze and visualize repertory grid data (e.g. Fransella', Bell', & Bannister', 2004, ISBN: 978-0-470-09080-0). The package is part of the The package is part of the <https://openrepgrid.org/> project.
Trains per-horizon probabilistic ensembles from a univariate time series. It supports rpart', glmnet', and kNN engines with flexible residual distributions and heteroscedastic scale models, weighting variants by calibration-aware scores. A Gaussian/t copula couples the marginals to simulate joint forecast paths, returning quantiles, means, and step increments across horizons.
An integrated R interface to the Overture API (<https://docs.overturemaps.org/>). Allows R users to return Overture data as dbplyr data frames or materialized sf spatial data frames.
This package provides a database resource that is accessible through the Open Database Connectivity ('ODBC') API. This package uses the Resource model, with URL "resolver" and "client", to dynamically discover and make accessible tables stored in a MS SQL Server database. For more details see Marcon (2021) <doi:10.1371/journal.pcbi.1008880>.
Representations, conversions and display of orientation SO(3) data. See the orientlib help topic for details.
Predictive scores must be updated with care, because actions taken on the basis of existing risk scores causes bias in risk estimates from the updated score. A holdout set is a straightforward way to manage this problem: a proportion of the population is held-out from computation of the previous risk score. This package provides tools to estimate a size for this holdout set and associated errors. Comprehensive vignettes are included. Please see: Haidar-Wehbe S, Emerson SR, Aslett LJM, Liley J (2022) <doi:10.48550/arXiv.2202.06374> (to appear in Annals of Applied Statistics) for details of methods.
This package provides a DBI-compatible interface to ODBC databases.
Potential outliers are identified for all combinations of a dataset's variables. O3 plots are described in Unwin(2019) <doi:10.1080/10618600.2019.1575226>. The available methods are HDoutliers() from the package HDoutliers', FastPCS() from the package FastPCS', mvBACON() from robustX', adjOutlyingness() from robustbase', DectectDeviatingCells() from cellWise', covMcd() from robustbase'.
It makes an objective Bayesian analysis of the spatial regression model using both the normal (NSR) and student-T (TSR) distributions. The functions provided give prior and posterior objective densities and allow default Bayesian estimation of the model regression parameters. Details can be found in Ordonez et al. (2020) <arXiv:2004.04341>.
This package provides a client that grants access to the power of the ohsome API from R. It lets you analyze the rich data source of the OpenStreetMap (OSM) history. You can retrieve the geometry of OSM data at specific points in time, and you can get aggregated statistics on the evolution of OSM elements and specify your own temporal, spatial and/or thematic filters.
Function library for the identification and separation of exponentially decaying signal components in continuous-wave optically stimulated luminescence measurements. A special emphasis is laid on luminescence dating with quartz, which is known for systematic errors due to signal components with unequal physical behaviour. Also, this package enables an easy to use signal decomposition of data sets imported and analysed with the R package Luminescence'. This includes the optional automatic creation of HTML reports. Further information and tutorials can be found at <https://luminescence.de>.
Generating and validating One-time Password based on Hash-based Message Authentication Code (HOTP) and Time Based One-time Password (TOTP) according to RFC 4226 <https://datatracker.ietf.org/doc/html/rfc4226> and RFC 6238 <https://datatracker.ietf.org/doc/html/rfc6238>.
We introduce an R function one_two_sample() which can deal with one and two (normal) samples, Ying-Ying Zhang, Yi Wei (2012) <doi:10.2991/asshm-13.2013.29>. For one normal sample x, the function reports descriptive statistics, plot, interval estimation and test of hypothesis of x. For two normal samples x and y, the function reports descriptive statistics, plot, interval estimation and test of hypothesis of x and y, respectively. It also reports interval estimation and test of hypothesis of mu1-mu2 (the difference of the means of x and y) and sigma1^2 / sigma2^2 (the ratio of the variances of x and y), tests whether x and y are from the same population, finds the correlation coefficient of x and y if x and y have the same length.
Offers a suite of functions for enhancing R plots.
This package provides a set of standard benchmark optimization functions for R and a common interface to sample them.
Optimal k Nearest Neighbours Ensemble is an ensemble of base k nearest neighbour models each constructed on a bootstrap sample with a random subset of features. k closest observations are identified for a test point "x" (say), in each base k nearest neighbour model to fit a stepwise regression to predict the output value of "x". The final predicted value of "x" is the mean of estimates given by all the models. The implemented model takes training and test datasets and trains the model on training data to predict the test data. Ali, A., Hamraz, M., Kumam, P., Khan, D.M., Khalil, U., Sulaiman, M. and Khan, Z. (2020) <DOI:10.1109/ACCESS.2020.3010099>.