Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a method that analyzes quality control metrics from multi-sample genomic sequencing studies and nominates poor quality samples for exclusion. Per sample quality control data are transformed into z-scores and aggregated. The distribution of aggregated z-scores are modelled using parametric distributions. The parameters of the optimal model, selected either by goodness-of-fit statistics or user-designation, are used for outlier nomination. Two implementations of the Cosine Similarity Outlier Detection algorithm are provided with flexible parameters for dataset customization.
Provide functionality for cancer subtyping using nearest centroids or machine learning methods based on TCGA data.
Density, distribution function, quantile function and random generation for the Odd Log-Logistic Generalized Gamma proposed in Prataviera, F. et al (2017) <doi:10.1080/00949655.2016.1238088>.
Access data and processing functionalities of openEO compliant back-ends in R.
Maximum homogeneity clustering algorithm for one-dimensional data described in W. D. Fisher (1958) <doi:10.1080/01621459.1958.10501479> via dynamic programming.
This package provides a set of tools that enables using OxCal from within R. OxCal (<https://c14.arch.ox.ac.uk/oxcal.html>) is a standard archaeological tool intended to provide 14C calibration and analysis of archaeological and environmental chronological information. OxcAAR allows simple calibration with Oxcal and plotting of the results as well as the execution of sophisticated ('OxCal') code and the import of the results of bulk analysis and complex Bayesian sequential calibration.
We proposes a framework that provides real time support for early detection of anomalous series within a large collection of streaming time series data. By definition, anomalies are rare in comparison to a system's typical behaviour. We define an anomaly as an observation that is very unlikely given the forecast distribution. The algorithm first forecasts a boundary for the system's typical behaviour using a representative sample of the typical behaviour of the system. An approach based on extreme value theory is used for this boundary prediction process. Then a sliding window is used to test for anomalous series within the newly arrived collection of series. Feature based representation of time series is used as the input to the model. To cope with concept drift, the forecast boundary for the system's typical behaviour is updated periodically. More details regarding the algorithm can be found in Talagala, P. D., Hyndman, R. J., Smith-Miles, K., et al. (2019) <doi:10.1080/10618600.2019.1617160>.
An implementation of DuMouchel's (1999) <doi:10.1080/00031305.1999.10474456> Bayesian data mining method for the market basket problem. Calculates Empirical Bayes Geometric Mean (EBGM) and posterior quantile scores using the Gamma-Poisson Shrinker (GPS) model to find unusually large cell counts in large, sparse contingency tables. Can be used to find unusually high reporting rates of adverse events associated with products. In general, can be used to mine any database where the co-occurrence of two variables or items is of interest. Also calculates relative and proportional reporting ratios. Builds on the work of the PhViD package, from which much of the code is derived. Some of the added features include stratification to adjust for confounding variables and data squashing to improve computational efficiency. Includes an implementation of the EM algorithm for hyperparameter estimation loosely derived from the mederrRank package.
Fits two-dimensional data by means of orthogonal nonlinear least-squares using Levenberg-Marquardt minimization and provides functionality for fit diagnostics and plotting. Delivers the same results as the ODRPACK Fortran implementation described in Boggs et al. (1989) <doi:10.1145/76909.76913>, but is implemented in pure R.
Standardized survey outcome rate functions, including the response rate, contact rate, cooperation rate, and refusal rate. These outcome rates allow survey researchers to measure the quality of survey data using definitions published by the American Association of Public Opinion Research (AAPOR). For details on these standards, see AAPOR (2016) <https://www.aapor.org/Standards-Ethics/Standard-Definitions-(1).aspx>.
This ONEST software implements the method of assessing the pathologist agreement in reading PD-L1 assays (Reisenbichler et al. (2020 <doi:10.1038/s41379-020-0544-x>)), to determine the minimum number of evaluators needed to estimate agreement involving a large number of raters. Input to the program should be binary(1/0) pathology data, where â 0â may stand for negative and â 1â for positive. Additional examples were given using the data from Rimm et al. (2017 <doi:10.1001/jamaoncol.2017.0013>).
Simultaneously evaluate multiple ordinal outcome measures. Applied data analysts in particular are faced with uncertainty in choosing appropriate statistical tests for ordinal data. The included shiny application allows users to simulate outcomes given different ordinal data distributions.
Optimal testing under general dependence. The R package implements procedures proposed in Wang, Han, and Tong (2022). The package includes parameter estimation procedures, the computation for the posterior probabilities, and the testing procedure.
This package implements the Bayesian online changepoint detection method by Adams and MacKay (2007) <arXiv:0710.3742> for univariate or multivariate data. Gaussian and Poisson probability models are implemented. Provides post-processing functions with alternative ways to extract changepoints.
Implementation of optimistic optimization methods for global optimization of deterministic or stochastic functions. The algorithms feature guarantees of the convergence to a global optimum. They require minimal assumptions on the (only local) smoothness, where the smoothness parameter does not need to be known. They are expected to be useful for the most difficult functions when we have no information on smoothness and the gradients are unknown or do not exist. Due to the weak assumptions, however, they can be mostly effective only in small dimensions, for example, for hyperparameter tuning.
Trains per-horizon probabilistic ensembles from a univariate time series. It supports rpart', glmnet', and kNN engines with flexible residual distributions and heteroscedastic scale models, weighting variants by calibration-aware scores. A Gaussian/t copula couples the marginals to simulate joint forecast paths, returning quantiles, means, and step increments across horizons.
It is a computer tool to estimate the item-sum score's reliability (composite reliability, CR) in multidimensional scales with overlapping items. An item that measures more than one domain construct is called an overlapping item. The estimation is based on factor models allowing unlimited cross-factor loadings such as exploratory structural equation modeling (ESEM) and Bayesian structural equation modeling (BSEM). The factor models include correlated-factor models and bi-factor models. Specifically for bi-factor models, a type of hierarchical factor model, the package estimates the CR hierarchical subscale/hierarchy and CR subscale/scale total. The CR estimator Omega-generic was proposed by Mai, Srivastava, and Krull (2021) <https://whova.com/embedded/subsession/enars_202103/1450751/1452993/>. The current version can only handle continuous data. Yujiao Mai contributes to the algorithms, R programming, and application example. Deo Kumar Srivastava contributes to the algorithms and the application example. Kevin R. Krull contributes to the application example. The package OmegaG was sponsored by American Lebanese Syrian Associated Charities (ALSAC). However, the contents of OmegaG do not necessarily represent the policy of the ALSAC.
Obtain and evaluate various optimal designs for the 3, 4, and 5-parameter logistic models. The optimal designs are obtained based on the numerical algorithm in Hyun, Wong, Yang (2018) <doi:10.18637/jss.v083.i05>.
An implementation of the Blinder-Oaxaca decomposition for linear regression models.
Sample from the limiting distributions of empirical Wasserstein distances under the null hypothesis and under the alternative. Perform a two-sample test on multivariate data using these limiting distributions and binning.
Allows code to be run only once on a given computer, using lockfiles. Typical use cases include startup messages shown only when a package is loaded for the very first time.
This package provides a set of binary operators for common tasks such as regex manipulation.
Helper functions for coding object-oriented programming with a focus on R6. Includes functions for assertions and testing, looping, and re-usable design patterns including Abstract and Decorator classes.
This package provides a collection of general-purpose helper functions that I (and maybe others) find useful when developing data science software. Includes tools for simulation, data transformation, input validation, and more.