Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package stores all schemas required by various alabaster.* packages. No computation should be performed by this package, as that is handled by alabaster.base.
This package offers functions to process multiple ChIP-seq BAM files and detect allele-specific events. It computes allele counts at individual variants (SNPs/SNVs), implements extensive QC (quality control) steps to remove problematic variants, and utilizes a Bayesian framework to identify statistically significant allele-specific events. BaalChIP is able to account for copy number differences between the two alleles, a known phenotypical feature of cancer samples.
This package provides visualization tools for flow cytometry data.
This package muscat provides various methods and visualization tools for DS(differential splicing) analysis in multi-sample, multi-group, multi-(cell-)subpopulation scRNA-seq data, including cell-level mixed models and methods based on aggregated "pseudobulk" data, as well as a flexible simulation platform that mimics both single and multi-sample scRNA-seq data.
The motifStack package is designed for graphic representation of multiple motifs with different similarity scores. It works with both DNA/RNA sequence motifs and amino acid sequence motifs. In addition, it provides the flexibility for users to customize the graphic parameters such as the font type and symbol colors.
This package provides gene-level read counts from RNA-Seq for gallein-treated and control zebrafish.
DEComplexDisease is designed to find the DEGs for complex disease, which is characterized by the heterogeneous genomic expression profiles. Different from the established DEG analysis tools, it does not assume the patients of complex diseases to share the common DEGs. By applying a bi-clustering algorithm, DEComplexDisease finds the DEGs shared by as many patients. Applying the DEComplexDisease analysis results, users are possible to find the patients affected by the same mechanism based on the shared signatures.
This package is an R implementation for fully unsupervised deconvolution of complex tissues. DebCAM provides basic functions to perform unsupervised deconvolution on mixture expression profiles by CAM and some auxiliary functions to help understand the subpopulation- specific results. It also implements functions to perform supervised deconvolution based on prior knowledge of molecular markers, S matrix or A matrix. Combining molecular markers from CAM and from prior knowledge can achieve semi-supervised deconvolution of mixtures.
This package provides an array-like container for convenient access and manipulation of HDF5 datasets. It supports delayed operations and block processing.
GOfuncR performs a gene ontology enrichment analysis based on the ontology enrichment software FUNC. GO-annotations are obtained from OrganismDb or OrgDb packages (Homo.sapiens by default); the GO-graph is included in the package and updated regularly. GOfuncR provides the standard candidate vs background enrichment analysis using the hypergeometric test, as well as three additional tests:
the Wilcoxon rank-sum test that is used when genes are ranked,
a binomial test that is used when genes are associated with two counts, and
a Chi-square or Fisher's exact test that is used in cases when genes are associated with four counts.
To correct for multiple testing and interdependency of the tests, family-wise error rates are computed based on random permutations of the gene-associated variables. GOfuncR also provides tools for exploring the ontology graph and the annotations, and options to take gene-length or spatial clustering of genes into account. It is also possible to provide custom gene coordinates, annotations and ontologies.
This package can do differential expression analysis of RNA-seq expression profiles with biological replication. It implements a range of statistical methodology based on the negative binomial distributions, including empirical Bayes estimation, exact tests, generalized linear models and quasi-likelihood tests. It be applied to differential signal analysis of other types of genomic data that produce counts, including ChIP-seq, SAGE and CAGE.
This package exposes an annotation database generated from Ensembl.
This package provides functions for pathway analysis based on the REACTOME pathway database. It implements enrichment analysis, gene set enrichment analysis and several functions for visualization.
This package provides a set of annotation maps for the REACTOME database, assembled using data from REACTOME.
This package is an implementation of the Adaptively Weighted Fisher's method, including fast p-value computing, variability index, and meta-pattern.
This package provides a set of protein ID mappings for PFAM, assembled using data from public repositories.
This is a package for the automated analysis of Affymetrix arrays. It provides reporting features.
This package provides infrastructure to store and manage all aspects related to a complete proteomics or metabolomics mass spectrometry (MS) experiment. The MsExperiment package provides light-weight and flexible containers for MS experiments building on the new MS infrastructure provided by the Spectra, QFeatures and related packages. Along with raw data representations, links to original data files and sample annotations, additional metadata or annotations can also be stored within the MsExperiment container. To guarantee maximum flexibility only minimal constraints are put on the type and content of the data within the containers.
This package provides software and data to support the case studies monograph.
Enriched heatmap is a special type of heatmap which visualizes the enrichment of genomic signals on specific target regions. This type of heatmap is just a normal heatmap but with some special settings, with the functionality of ComplexHeatmap, it would be much easier to customize the heatmap as well as concatenating to a list of heatmaps to show correspondence between different data sources.
This package creates a persistent on-disk cache of files that the user can add, update, and retrieve. It is useful for managing resources (such as custom Txdb objects) that are costly or difficult to create, web resources, and data files used across sessions.
This is a package for biclustering analysis and exploration of results.
The package uses quadratic programming for signature refitting, i.e., to decompose the mutation catalog from an individual tumor sample into a set of given mutational signatures (either Alexandrov-model signatures or Shiraishi-model signatures), computing weights that reflect the contributions of the signatures to the mutation load of the tumor.
TrackViewer offers multi-omics analysis with web based tracks and lollipops. Visualize mapped reads along with annotation as track layers for NGS datasets such as ChIP-seq, RNA-seq, miRNA-seq, DNA-seq, SNPs and methylation data.