Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
IONiseR provides tools for the quality assessment of Oxford Nanopore MinION data. It extracts summary statistics from a set of fast5 files and can be used either before or after base calling. In addition to standard summaries of the read-types produced, it provides a number of plots for visualising metrics relative to experiment run time or spatially over the surface of a flowcell.
This package helps with the analysis of array CGH data by detecting of the breakpoints in the genomic profiles and assignment of a status (gain, normal or loss) to each chromosomal regions identified.
The biobtreeR package provides an interface to biobtree, a tool which covers large sets of bioinformatics datasets and allows search and chain mappings functionalities.
This package provides functions to compare two or more survival curves with:
The Fleming-Harrington test for right-censored data based on permutations and on counting processes.
An extension of the Fleming-Harrington test for interval-censored data based on a permutation distribution and on a score vector distribution.
This package provides a set of annotation maps describing the entire Disease Ontology.
This package provides R environments for the annotation of microarrays.
Single-cell RNA-seq (scRNA-seq) is widely used to investigate the composition of complex tissues since the technology allows researchers to define cell-types using unsupervised clustering of the transcriptome. However, due to differences in experimental methods and computational analyses, it is often challenging to directly compare the cells identified in two different experiments. scmap is a method for projecting cells from a scRNA-seq experiment onto the cell-types or individual cells identified in a different experiment.
This package is devoted to analyzing high-throughput data (e.g. gene expression microarray, DNA methylation microarray, RNA-seq) from complex tissues. Current functionalities include
detect cell-type specific or cross-cell type differential signals
tree-based differential analysis
improve variable selection in reference-free deconvolution
partial reference-free deconvolution with prior knowledge.
This is a supportive data package for the software package gage. However, the data supplied here are also useful for gene set or pathway analysis or microarray data analysis in general. In this package, we provide two demo microarray dataset: GSE16873 (a breast cancer dataset from GEO) and BMP6 (originally published as an demo dataset for GAGE, also registered as GSE13604 in GEO). This package also includes commonly used gene set data based on KEGG pathways and GO terms for major research species, including human, mouse, rat and budding yeast. Mapping data between common gene IDs for budding yeast are also included.
This package provides a consistent C++ class interface for a variety of commonly used matrix types, including sparse and HDF5-backed matrices.
This package provides an annotation database of Mouse genome data. It is derived from the UCSC mm9 genome and based on the "knownGene" track. The database is exposed as a TxDb object.
This package implements sampling, iteration, and input of FASTQ files. It includes functions for filtering and trimming reads, and for generating a quality assessment report. Data are represented as DNAStringSet-derived objects, and easily manipulated for a diversity of purposes. The package also contains legacy support for early single-end, ungapped alignment formats.
This package provides full genome sequences for Mus musculus (Mouse) as provided by UCSC (mm9, Jul. 2007) and stored in Biostrings objects. The sequences are the same as in BSgenome.Mmusculus.UCSC.mm9, except that each of them has the 4 following masks on top: (1) the mask of assembly gaps (AGAPS mask), (2) the mask of intra-contig ambiguities (AMB mask), (3) the mask of repeats from RepeatMasker (RM mask), and (4) the mask of repeats from Tandem Repeats Finder (TRF mask). Only the AGAPS and AMB masks are "active" by default.
This package provides an R interface to Illumina's BaseSpace cloud computing environment, enabling the fast development of data analysis and visualization tools. Besides providing an easy to use set of tools for manipulating the data from BaseSpace, it also facilitates the access to R's rich environment of statistical and data analysis tools.
Bioconductor has a rich ecosystem of metadata around packages, usage, and build status. This package is a simple collection of functions to access that metadata from R. The goal is to expose metadata for data mining and value-added functionality such as package searching, text mining, and analytics on packages.
This package provides efficient low-level and highly reusable S4 classes for storing ranges of integers, RLE vectors (Run-Length Encoding), and, more generally, data that can be organized sequentially (formally defined as Vector objects), as well as views on these Vector objects. Efficient list-like classes are also provided for storing big collections of instances of the basic classes. All classes in the package use consistent naming and share the same rich and consistent "Vector API" as much as possible.
The biodb package provides access to standard remote chemical and biological databases (ChEBI, KEGG, HMDB, ...), as well as to in-house local database files (CSV, SQLite), with easy retrieval of entries, access to web services, search of compounds by mass and/or name, and mass spectra matching for LCMS and MSMS. Its architecture as a development framework facilitates the development of new database connectors for local projects or inside separate published packages.
AUCell identifies cells with active gene sets (e.g. signatures, gene modules, etc) in single-cell RNA-seq data. AUCell uses the Area Under the Curve (AUC) to calculate whether a critical subset of the input gene set is enriched within the expressed genes for each cell. The distribution of AUC scores across all the cells allows exploring the relative expression of the signature. Since the scoring method is ranking-based, AUCell is independent of the gene expression units and the normalization procedure. In addition, since the cells are evaluated individually, it can easily be applied to bigger datasets, subsetting the expression matrix if needed.
This package implements utilities for installation of the basilisk package, primarily for creation of the underlying Conda instance.
This package provides a framework for allele-specific expression investigation using RNA-seq data.
The package includes functions to retrieve the sequences around the peak, obtain enriched Gene Ontology (GO) terms, find the nearest gene, exon, miRNA or custom features such as most conserved elements and other transcription factor binding sites supplied by users. Starting 2.0.5, new functions have been added for finding the peaks with bi-directional promoters with summary statistics (peaksNearBDP), for summarizing the occurrence of motifs in peaks (summarizePatternInPeaks) and for adding other IDs to annotated peaks or enrichedGO (addGeneIDs).
This is a package for parsing Affymetrix files (CDF, CEL, CHP, BPMAP, BAR). It provides methods for fast and memory efficient parsing of Affymetrix files using the Affymetrix' Fusion SDK. Both ASCII- and binary-based files are supported. Currently, there are methods for reading chip definition file (CDF) and a cell intensity file (CEL). These files can be read either in full or in part. For example, probe signals from a few probesets can be extracted very quickly from a set of CEL files into a convenient list structure.
This package provides a package for RNA basepair analysis, including the visualization of basepairs as arc diagrams for easy comparison and annotation of sequence and structure. Arc diagrams can additionally be projected onto multiple sequence alignments to assess basepair conservation and covariation, with numerical methods for computing statistics for each.
The necessary external data to run the flowWorkspace and openCyto vignette is found in this package. This data package contains two flowJo, one diva xml workspace and the associated fcs files as well as three GatingSets for testing the flowWorkspace, openCyto and CytoML packages.