Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
It streamlines the evaluation of regression model assumptions, enhancing result reliability. With integrated tools for assessing key aspects like linearity, homoscedasticity, and more. It's a valuable asset for researchers and analysts working with regression models.
Non-linear inversion for hypocenter estimation and analysis of seismic data collected continuously, or in trigger mode. The functions organize other functions from RSEIS and GEOmap to help researchers pick, locate, and store hypocenters for detailed seismic investigation. Error ellipsoids and station influence are estimated via jackknife analysis. References include Iversen, E. S., and J. M. Lees (1996)<doi:10.1785/BSSA0860061853>.
This package provides tools for grading the coding style and documentation of R scripts. This is the R component of Roger the Omni Grader, an automated grading system for computer programming projects based on Unix shell scripts; see <https://gitlab.com/roger-project>. The package also provides an R interface to the shell scripts. Inspired by the lintr package.
An implementation of a stochastic heuristic method for performing multidimensional function optimization. The method is inspired in the Cross-Entropy Method. It does not relies on derivatives, neither imposes particularly strong requirements into the function to be optimized. Additionally, it takes profit from multi-core processing to enable optimization of time-consuming functions.
Interface for loading data from ActiveCampaign API v3 <https://developers.activecampaign.com/reference>. Provide functions for getting data by deals, contacts, accounts, campaigns and messages.
An implementation of Bayesian online changepoint detection (Adams and MacKay (2007) <doi:10.48550/arXiv.0710.3742>) with an option for probability based outlier detection and removal (Wendelberger et. al. (2021) <doi:10.48550/arXiv.2112.12899>). Building on the independent multivariate constant mean model implemented in the R package ocp', this package models multivariate data as multivariate normal about a linear trend, defined by user input covariates, with an unstructured error covariance. Changepoints are identified based on a probability threshold for windows of points.
This package provides popular sampling distributions C++ routines based in armadillo through a header file approach.
The significance of mean difference tests in clinical trials is established if at least r null hypotheses are rejected among m that are simultaneously tested. This package enables one to compute necessary sample sizes for single-step (Bonferroni) and step-wise procedures (Holm and Hochberg). These three procedures control the q-generalized family-wise error rate (probability of making at least q false rejections). Sample size is computed (for these single-step and step-wise procedures) in a such a way that the r-power (probability of rejecting at least r false null hypotheses, i.e. at least r significant endpoints among m) is above some given threshold, in the context of tests of difference of means for two groups of continuous endpoints (variables). Various types of structure of correlation are considered. It is also possible to analyse data (i.e., actually test difference in means) when these are available. The case r equals 1 is treated in separate functions that were used in Lafaye de Micheaux et al. (2014) <doi:10.1080/10543406.2013.860156>.
An example package which shows use of NLopt functionality from C++ via Rcpp without requiring linking, and relying just on nloptr thanks to the exporting API added there by Jelmer Ypma. This package is a fully functioning, updated, and expanded version of the initial example by Julien Chiquet at <https://github.com/jchiquet/RcppArmadilloNLoptExample> also containing a large earlier pull request of mine.
This package provides a set of functions to simplify reading data from files. The main function, reader(), should read most common R datafile types without needing any parameters except the filename. Other functions provide simple ways of handling file paths and extensions, and automatically detecting file format and structure.
This package provides functions to analyse DNA fragment samples (i.e. derived from RFLP-analysis) and standalone BLAST report files (i.e. DNA sequence analysis).
Interface to the yacas computer algebra system (<http://www.yacas.org/>).
Enables researchers to sample redistricting plans from a pre-specified target distribution using Sequential Monte Carlo and Markov Chain Monte Carlo algorithms. The package allows for the implementation of various constraints in the redistricting process such as geographic compactness and population parity requirements. Tools for analysis such as computation of various summary statistics and plotting functionality are also included. The package implements the SMC algorithm of McCartan and Imai (2023) <doi:10.1214/23-AOAS1763>, the enumeration algorithm of Fifield, Imai, Kawahara, and Kenny (2020) <doi:10.1080/2330443X.2020.1791773>, the Flip MCMC algorithm of Fifield, Higgins, Imai and Tarr (2020) <doi:10.1080/10618600.2020.1739532>, the Merge-split/Recombination algorithms of Carter et al. (2019) <doi:10.48550/arXiv.1911.01503> and DeFord et al. (2021) <doi:10.1162/99608f92.eb30390f>, and the Short-burst optimization algorithm of Cannon et al. (2020) <doi:10.48550/arXiv.2011.02288>.
Download and open manifest files provided by the Copernicus Global Land Service data <https://land.copernicus.eu/global/>. The manifest files are available at: <https://land.copernicus.vgt.vito.be/manifest/>. Also see: <https://land.copernicus.eu/global/access/>. Before you can download the data, you will first need to register to create a username and password.
An R6 class "Replacer" provided by the package simplifies working with regex patterns containing named groups. It allows easy retrieval of matched portions and targeted replacements by group name, improving both code clarity and maintainability.
Some extensions to Rcmdr (R Commander), randomness test, variance test for one normal sample and predictions using active model, made by R-UCA project and used in teaching statistics at University of Cadiz (UCA).
We visualize the standard deviation of a data set as the radius of a cylinder whose volume equals the total volume of several cylinders made by revolving the empirical cumulative distribution function about the vertical line through the mean. For more details see Sarkar and Rashid (2016) <doi:10.1080/00031305.2016.1165734>.
Three-step regression and inference for cellwise and casewise contamination.
Rapidly estimates tree-topology from large allele frequency data using Root Distances Method, under a Brownian Motion Model. See Peng et al. (2021) <doi:10.1016/j.ympev.2021.107142>.
Bootstrap, permutation tests, and jackknife, featuring easy-to-use syntax.
Interface of MIXMOD software for supervised, unsupervised and semi-supervised classification with mixture modelling <doi: 10.18637/jss.v067.i06>.
Earth Engine <https://earthengine.google.com/> client library for R. All of the Earth Engine API classes, modules, and functions are made available. Additional functions implemented include importing (exporting) of Earth Engine spatial objects, extraction of time series, interactive map display, assets management interface, and metadata display. See <https://r-spatial.github.io/rgee/> for further details.
This package provides functionality for carrying out sample size estimation and power calculation in Respondent-Driven Sampling.
Bootstrap forecast densities for GARCH (Generalized Autoregressive Conditional Heteroskedastic) returns and volatilities using the robust residual-based bootstrap procedure of Trucios, Hotta and Ruiz (2017) <DOI:10.1080/00949655.2017.1359601>.