Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a method for prediction of environmental conditions based on transcriptome data linked with the environmental gradients. This package provides functions to overview gene-environment relationships, to construct the prediction model, and to predict environmental conditions where the transcriptomes were generated. This package can quest for candidate genes for the model construction even in non-model organisms transcriptomes without any genetic information.
This package provides comprehensive methods for testing, estimating, and conducting uniform inference on quantile treatment effects (QTEs) in sharp regression discontinuity (RD) designs, incorporating covariates and implementing robust bias correction methods of Qu, Yoon, Perron (2024) <doi:10.1162/rest_a_01168>.
Simplifies output suppression logic in R packages, as it's common to develop some form of it in R. quietR intends to simplify that problem and allow a set of simple toggle functions to be used to suppress console output.
This package provides functions for estimating ploidy levels and detecting aneuploidy in individuals using allele intensities or allele count data from high-throughput genotyping platforms, including single nucleotide polymorphism (SNP) arrays and sequencing-based technologies. Implements an extended version of the PennCNV signal standardization method by Wang et al. (2007) <doi:10.1101/gr.6861907> for higher ploidy levels. Computes B-allele frequencies (BAF), z-scores, and identifies copy number variation patterns.
This package provides functionality for working with raster-like quadtrees (also called â region quadtreesâ ), which allow for variable-sized cells. The package allows for flexibility in the quadtree creation process. Several functions defining how to split and aggregate cells are provided, and custom functions can be written for both of these processes. In addition, quadtrees can be created using other quadtrees as â templatesâ , so that the new quadtree's structure is identical to the template quadtree. The package also includes functionality for modifying quadtrees, querying values, saving quadtrees to a file, and calculating least-cost paths using the quadtree as a resistance surface.
Functionality for generating (randomized) quasi-random numbers in high dimensions.
Given inputs A,B and C, this package solves the matrix equation A*X^2 - B*X - C = 0.
Construct message-passing style objects with types and features. Q7 types uses composition instead of inheritance in creating derived types, allowing defining any code segment as feature and associating any feature to any object. Compared to R6, Q7 is simpler and more flexible, and is more friendly in syntax.
This function performs QR factorization without pivoting to a real or complex matrix. It is based on Anderson. E. and ten others (1999) "LAPACK Users Guide". Third Edition. SIAM.
This package implements moving-blocks bootstrap and extended tapered-blocks bootstrap, as well as smooth versions of each, for quantile regression in time series. This package accompanies the paper: Gregory, K. B., Lahiri, S. N., & Nordman, D. J. (2018). A smooth block bootstrap for quantile regression with time series. The Annals of Statistics, 46(3), 1138-1166.
This function aims to calculate risk of developing cardiovascular disease of individual patients in next 10 years. This unofficial package was based on published open-sourced free risk prediction algorithm QRISK3-2017 <https://qrisk.org/src.php>.
Quality control of chromatin immunoprecipitation libraries (ChIP-seq) by quantitative polymerase chain reaction (qPCR). This function calculates Enrichment value with respect to reference for each histone modification (specific to Vii7 software <http://www.thermofisher.com/ca/en/home/life-science/pcr/real-time-pcr/real-time-pcr-instruments/viia-7-real-time-pcr-system/viia-7-software.html>). This function is applicable to full panel of histone modifications described by International Human Epigenomic Consortium (IHEC).
Function that implements the Quantum Genetic Algorithm, first proposed by Han and Kim in 2000. This is an R implementation of the python application developed by Lahoz-Beltra (<https://github.com/ResearchCodesHub/QuantumGeneticAlgorithms>). Each optimization problem is represented as a maximization one, where each solution is a sequence of (qu)bits. Following the quantum paradigm, these qubits are in a superposition state: when measuring them, they collapse in a 0 or 1 state. After measurement, the fitness of the solution is calculated as in usual genetic algorithms. The evolution at each iteration is oriented by the application of two quantum gates to the amplitudes of the qubits: (1) a rotation gate (always); (2) a Pauli-X gate (optionally). The rotation is based on the theta angle values: higher values allow a quicker evolution, and lower values avoid local maxima. The Pauli-X gate is equivalent to the classical mutation operator and determines the swap between alfa and beta amplitudes of a given qubit. The package has been developed in such a way as to permit a complete separation between the engine, and the particular problem subject to combinatorial optimization.
This package provides a multivariate copula-based dependence measure. For more information, see Griessenberger, Junker, Trutschnig (2022), On a multivariate copula-based dependence measure and its estimation, Electronic Journal of Statistics, 16, 2206-2251.
Collect your data on digital marketing campaigns from Quora Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
The letters qe in the package title stand for "quick and easy," alluding to the convenience goal of the package. We bring together a variety of machine learning (ML) tools from standard R packages, providing wrappers with a simple, convenient, and uniform interface.
This package provides tools for (automated and manual) quality control of the results of Epigenome-Wide Association Studies.
Compile R functions annotated with type and shape declarations for extremely fast performance and robust runtime type checking. Supports both just-in-time (JIT) and ahead-of-time (AOT) compilation. Compilation is performed by lowering R code to Fortran.
Nonlinear machine learning tool for classification, clustering and dimensionality reduction. It integrates 12 q-kernel functions and 15 conditional negative definite kernel functions and includes the q-kernel and conditional negative definite kernel version of density-based spatial clustering of applications with noise, spectral clustering, generalized discriminant analysis, principal component analysis, multidimensional scaling, locally linear embedding, sammon's mapping and t-Distributed stochastic neighbor embedding.
Converts R scripts (.R) into Quarto markdown documents (.qmd) with automatic formatting. Recognizes RStudio code sections, preserves comments as narrative text, extracts metadata from special comments, and provides both programmatic functions and an interactive RStudio add-in for easy conversion.
Property based testing, inspired by the original QuickCheck'. This package builds on the property based testing framework provided by hedgehog and is designed to seamlessly integrate with testthat'.
Simulating and estimating peer effect models including the quantile-based specification (Houndetoungan, 2025 <doi:10.48550/arXiv.2506.12920>), and the models with Constant Elasticity of Substitution (CES)-based social norm (Boucher et al., 2024 <doi:10.3982/ECTA21048>).
Estimate quadratic vector autoregression models with the strong hierarchy using the Regularization Algorithm under Marginality Principle (RAMP) by Hao et al. (2018) <doi:10.1080/01621459.2016.1264956>, compare the performance with linear models, and construct networks with partial derivatives.
This package provides functions and data sets for reproducing selected results from the book "Quantitative Risk Management: Concepts, Techniques and Tools". Furthermore, new developments and auxiliary functions for Quantitative Risk Management practice.