Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
To enable quantitative trait loci mapping of neighbor effects, this package extends a single-marker regression to interval mapping. The theoretical background of the method is described in Sato et al. (2021) <doi:10.1093/g3journal/jkab017>.
Calculate endogenous network effects in event sequences and fit relational event models (REM): Using network event sequences (where each tie between a sender and a target in a network is time-stamped), REMs can measure how networks form and evolve over time. Endogenous patterns such as popularity effects, inertia, similarities, cycles or triads can be calculated and analyzed over time.
Installs OpenCV for use by other packages. OpenCV <https://opencv.org/> is library of programming functions mainly aimed at real-time computer vision. This Lite version installs the stable base version of OpenCV and some of its experimental externally contributed modules. It does not provide R bindings directly.
Robust Location and Scatter Estimation and Robust Multivariate Analysis with High Breakdown Point for Incomplete Data (missing values) (Todorov et al. (2010) <doi:10.1007/s11634-010-0075-2>).
Rasch model and extensions for survey data, using Conditional Maximum likelihood (CML). Carlo Cafiero, Sara Viviani, Mark Nord (2018) <doi:10.1016/j.measurement.2017.10.065>.
Offers functions for fetching JSON data from the US EPA Air Quality System (AQS) API with options to comply with the API rate limits. See <https://aqs.epa.gov/aqsweb/documents/data_api.html> for details of the AQS API.
Rcmdr plug-in GUI extension for Evidence Based Medicine medical indicators calculations (Sensitivity, specificity, absolute risk reduction, relative risk, ...).
Compute the values of various parameters evaluating how similar two multidimensional datasets structures are in multidimensional space, as described in: Jouan-Rimbaud, D., Massart, D. L., Saby, C. A., Puel, C. (1998), <doi:10.1016/S0169-7439(98)00005-7>. The computed parameters evaluate three properties, namely, the direction of the data sets, the variance-covariance of the data points, and the location of the data sets centroids. The package contains workhorse function jrparams(), as well as two helper functions Mboxtest() and JRsMahaldist(), and four example data sets.
The traditional linear regression trend, Modified Mann-Kendall (MK) non-parameter trend and bootstrap trend are included in this package. Linear regression trend is rewritten by .lm.fit'. MK trend is rewritten by Rcpp'. Finally, those functions are about 10 times faster than previous version in R. Reference: Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), 182-196. <doi:10.1016/S0022-1694(97)00125-X>.
This package provides a tool to calculate Cardiovascular Risk Scores in large data frames as published in Perez-Vicencio, et al (2024) <doi:10.1136/openhrt-2024-002755>. Cardiovascular risk scores are statistical tools used to assess an individual's likelihood of developing a cardiovascular disease based on various risk factors, such as age, gender, blood pressure, cholesterol levels, and smoking. Here we bring together the six most commonly used in the emergency department. Using RiskScorescvd', you can calculate all the risk scores in an extended dataset in seconds. PCE (ASCVD) described in Goff, et al (2013) <doi:10.1161/01.cir.0000437741.48606.98>. EDACS described in Mark DG, et al (2016) <doi:10.1016/j.jacc.2017.11.064>. GRACE described in Fox KA, et al (2006) <doi:10.1136/bmj.38985.646481.55>. HEART is described in Mahler SA, et al (2017) <doi:10.1016/j.clinbiochem.2017.01.003>. SCORE2/OP described in SCORE2 working group and ESC Cardiovascular risk collaboration (2021) <doi:10.1093/eurheartj/ehab309>. TIMI described in Antman EM, et al (2000) <doi:10.1001/jama.284.7.835>. SCORE2-Diabetes described in SCORE2-Diabetes working group and ESC Cardiovascular risk collaboration (2023) <doi:10.1093/eurheartj/ehab260>. SCORE2/OP with CKD add-on described in Kunihiro M et al (2022) <doi:10.1093/eurjpc/zwac176>.
These functions are especially helpful when writing reports of data analysis using "Sweave".
An R Commander plug-in providing an integrated solution to perform a series of text mining tasks such as importing and cleaning a corpus, and analyses like terms and documents counts, vocabulary tables, terms co-occurrences and documents similarity measures, time series analysis, correspondence analysis and hierarchical clustering. Corpora can be imported from spreadsheet-like files, directories of raw text files, as well as from Dow Jones Factiva', LexisNexis', Europresse and Alceste files.
This package provides functions to assist in performing probabilistic record linkage and deduplication: generating pairs, comparing records, em-algorithm for estimating m- and u-probabilities (I. Fellegi & A. Sunter (1969) <doi:10.1080/01621459.1969.10501049>, T.N. Herzog, F.J. Scheuren, & W.E. Winkler (2007), "Data Quality and Record Linkage Techniques", ISBN:978-0-387-69502-0), forcing one-to-one matching. Can also be used for pre- and post-processing for machine learning methods for record linkage. Focus is on memory, CPU performance and flexibility.
This package provides a tool to conquer the difficulties to convert various region names and administration division codes of Chinese regions. The current version enables seamlessly converting Chinese regions formal names, common-used names, and codes between each other at the city level from 1986 to 2019.
Supports modelling real-time case data to facilitate the real-time surveillance of infectious diseases and other point phenomena. The package provides automated computational grid generation over an area of interest with methods to map covariates between geographies, model fitting including spatially aggregated case counts, and predictions and visualisation. Both Bayesian and maximum likelihood methods are provided. Log-Gaussian Cox Processes are described by Diggle et al. (2013) <doi:10.1214/13-STS441> and we provide both the low-rank approximation for Gaussian processes described by Solin and Särkkä (2020) <doi:10.1007/s11222-019-09886-w> and Riutort-Mayol et al (2023) <doi:10.1007/s11222-022-10167-2> and the nearest neighbour Gaussian process described by Datta et al (2016) <doi:10.1080/01621459.2015.1044091>. cmdstanr can be downloaded at <https://mc-stan.org/cmdstanr/>.
Implementation of hash tables (hash sets and hash maps) in R, featuring arbitrary R objects as keys, arbitrary hash and key-comparison functions, and customizable behaviour upon queries of missing keys.
Implementation of an alternating direction method of multipliers algorithm for fitting a linear model with tree-based lasso regularization, which is proposed in Algorithm 1 of Yan and Bien (2020) <doi:10.1080/01621459.2020.1796677>. The package allows efficient model fitting on the entire 2-dimensional regularization path for large datasets. The complete set of functions also makes the entire process of tuning regularization parameters and visualizing results hassle-free.
This package provides a comprehensive set of regular expression functions based on those found in Python without relying on reticulate'. It provides functions that intend to (1) make it easier for users familiar with Python to work with regular expressions, (2) reduce the complexity often associated with regular expressions code, (3) and enable users to write more readable and maintainable code that relies on regular expression-based pattern matching.
This package provides tools for downloading and analyzing CDC NHANES data, with a focus on analytical laboratory data.
This package contains functions to retrieve, organize, and visualize weather data from the NCEP/NCAR Reanalysis (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html>) and NCEP/DOE Reanalysis II (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html>) datasets. Data are queried via the Internet and may be obtained for a specified spatial and temporal extent or interpolated to a point in space and time. We also provide functions to visualize these weather data on a map. There are also functions to simulate flight trajectories according to specified behavior using either NCEP wind data or data specified by the user.
This package provides functions allowing the user to recursively extract frequent patterns and confident rules according to indicators of minimal support and minimal confidence. These functions are described in "Recursive Association Rule Mining" Abdelkader Mokkadem, Mariane Pelletier, Louis Raimbault (2020) <arXiv:2011.14195>.
This package performs the random projection test (Lopes et al., (2011) <doi:10.48550/arXiv.1108.2401>) for the one-sample and two-sample hypothesis testing problem for equality of means in the high dimensional setting. We are interested in detecting the mean vector in the one-sample problem or the difference between mean vectors in the two-sample problem.
Wrapper for the PoetryDB API <http://poetrydb.org> that allows for interaction and data extraction from the database in an R interface. The PoetryDB API is a database of poetry and poets implemented with MongoDB to enable developers and poets to easily access one of the most comprehensive poetry databases currently available.
Obtain information about countries around the globe. Information for names, states, languages, time, capitals, currency and many more. Data source are Wikipedia <https://www.wikipedia.org>, TimeAndDate <https://www.timeanddate.com> and CountryCode <https://countrycode.org>.