Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Parametric modeling of quantile regression coefficient functions.
This package provides a set of functions of increasing complexity allows users to (1) convert QuadKey-identified datasets, based on Microsoft's Bing Maps Tile System', into Simple Features data frames, (2) transform Simple Features data frames into rasters, and (3) process multiple Meta ('Facebook') QuadKey-identified human mobility files directly into raster files. For more details, see Dâ Andrea et al. (2024) <doi:10.21105/joss.06500>.
Implementations of the quantile slice sampler of Heiner et al. (2024+, in preparation) as well as other popular slice samplers are provided. Helper functions for specifying pseudo-target distributions are included, both for diagnostics and for tuning the quantile slice sampler. Other implemented methods include the generalized elliptical slice sampler of Nishihara et al. (2014)<https://jmlr.org/papers/v15/nishihara14a.html
This package provides a high-level plotting system, compatible with `ggplot2` objects, maps from `sf`, `terra`, `raster`, `sp`. It is built primarily on the grid package. The objective of the package is to provide a plotting system that is built for speed and modularity. This is useful for quick visualizations when testing code and for plotting multiple figures to the same device from independent sources that may be independent of one another (i.e., different function or modules the create the visualizations).
Property based testing, inspired by the original QuickCheck'. This package builds on the property based testing framework provided by hedgehog and is designed to seamlessly integrate with testthat'.
Full text, in data frames containing one row per verse, of the Qur'an in Arabic (with and without vowels) and in English (the Yusuf Ali and Saheeh International translations), formatted to be convenient for text analysis.
Univariate and multivariate SQC tools that completes and increases the SQC techniques available in R. Apart from integrating different R packages devoted to SQC ('qcc','MSQC'), provides nonparametric tools that are highly useful when Gaussian assumption is not met. This package computes standard univariate control charts for individual measurements, X-bar', S', R', p', np', c', u', EWMA and CUSUM'. In addition, it includes functions to perform multivariate control charts such as Hotelling T2', MEWMA and MCUSUM'. As representative feature, multivariate nonparametric alternatives based on data depth are implemented in this package: r', Q and S control charts. In addition, Phase I and II control charts for functional data are included. This package also allows the estimation of the most complete set of capability indices from first to fourth generation, covering the nonparametric alternatives, and performing the corresponding capability analysis graphical outputs, including the process capability plots. See Flores et al. (2021) <doi:10.32614/RJ-2021-034>.
Calculates the right-tail probability of quadratic forms of Gaussian variables using the skewness-kurtosis ratio matching method, modified Liu-Tang-Zhang method and Satterthwaite-Welch method. The technical details can be found in Hong Zhang, Judong Shen and Zheyang Wu (2020) <arXiv:2005.00905>.
The quantity-intensity (Q/I) relationships, first introduced by Beckett (1964), can be employed to assess the K supplying capacity of different soils based on solid-solution exchange equilibria. Such relationships describe the changes in K+ concentration in the soil solution (or the intensity factor) in relation to the corresponding changes in K+ at exchange sites of the soil (or the capacity or quantity factor). Activity ratio of K to Ca or Ca+Mg is generally used as the variable denoting the intensity, whereas, change in exchangeable K is used to denote the quantity factor.
This package provides functions for unconditional and conditional quantiles. These include methods for transformation-based quantile regression, quantile-based measures of location, scale and shape, methods for quantiles of discrete variables, quantile-based multiple imputation, restricted quantile regression, directional quantile classification, and quantile ratio regression. A vignette is given in Geraci (2016, The R Journal) <doi:10.32614/RJ-2016-037> and included in the package.
This package provides several methods for computing the Quantile Treatment Effect (QTE) and Quantile Treatment Effect on the Treated (QTT). The main cases covered are (i) Treatment is randomly assigned, (ii) Treatment is as good as randomly assigned after conditioning on some covariates (also called conditional independence or selection on observables) using the methods developed in Firpo (2007) <doi:10.1111/j.1468-0262.2007.00738.x>, (iii) Identification is based on a Difference in Differences assumption (several varieties are available in the package e.g. Athey and Imbens (2006) <doi:10.1111/j.1468-0262.2006.00668.x> Callaway and Li (2019) <doi:10.3982/QE935>, Callaway, Li, and Oka (2018) <doi:10.1016/j.jeconom.2018.06.008>).
This package implements the nonparametric quantile regression method developed by Belloni, Chernozhukov, and Fernandez-Val (2011) to partially linear quantile models. Provides point estimates of the conditional quantile function and its derivatives based on series approximations to the nonparametric part of the model. Provides pointwise and uniform confidence intervals using analytic and resampling methods.
This package provides functions and tools for creating, visualizing, and investigating properties of continuous-time quantum walks, including efficient calculation of matrices such as the mixing matrix, average mixing matrix, and spectral decomposition of the Hamiltonian. E. Farhi (1997): <arXiv:quant-ph/9706062v2>; C. Godsil (2011) <arXiv:1103.2578v3>.
This package provides functions to infer co-mapping trait hotspots and causal models. Chaibub Neto E, Keller MP, Broman AF, Attie AD, Jansen RC, Broman KW, Yandell BS (2012) Quantile-based permutation thresholds for QTL hotspots. Genetics 191 : 1355-1365. <doi:10.1534/genetics.112.139451>. Chaibub Neto E, Broman AT, Keller MP, Attie AD, Zhang B, Zhu J, Yandell BS (2013) Modeling causality for pairs of phenotypes in system genetics. Genetics 193 : 1003-1013. <doi:10.1534/genetics.112.147124>.
Qiita is a technical knowledge sharing and collaboration platform for programmers. See <https://qiita.com/api/v2/docs> for more information.
Enables tidyverse operations on quanteda corpus objects by extending dplyr verbs to work directly with corpus objects and their document-level variables ('docvars'). Implements row operations for subsetting and reordering documents; column operations for managing document variables; grouped operations; and two-table verbs for merging external data. For more on quanteda see Benoit et al. (2018) <doi:10.21105/joss.00774>. For dplyr see Wickham et al. (2023) <doi:10.32614/CRAN.package.dplyr>.
Allows practitioners to determine (i) if two univariate distributions (which can be continuous, discrete, or even mixed) are equal, (ii) how two distributions differ (shape differences, e.g., location, scale, etc.), and (iii) where two distributions differ (at which quantiles), all using nonparametric LP statistics. The primary reference is Jungreis, D. (2019, Technical Report).
Supports risk assessors in performing the entry step of the quantitative Pest Risk Assessment. It allows the estimation of the amount of a plant pest entering a risk assessment area (in terms of founder populations) through the calculation of the imported commodities that could be potential pathways of pest entry, and the development of a pathway model. Two Shiny apps based on the functionalities of the package are included, that simplify the process of assessing the risk of entry of plant pests. The approach is based on the work of the European Food Safety Authority (EFSA PLH Panel et al., 2018) <doi:10.2903/j.efsa.2018.5350>.
This package provides a tool that can be customized to aid in the clean up of ecological data collected using quadrats and can crop quadrats to ensure comparability between quadrats collected under different methodologies.
This package provides functions for quickly writing (and reading back) a data.frame to file in SQLite format. The name stands for *Store Tables using SQLite'*, or alternatively for *Quick Store Tables* (either way, it could be pronounced as *Quest*). For data.frames containing the supported data types it is intended to work as a drop-in replacement for the write_*() and read_*() functions provided by similar packages.
The modeling and prediction of graph-associated time series(GATS) based on continuous time quantum walk. This software is mainly used for feature extraction, modeling, prediction and result evaluation of GATS, including continuous time quantum walk simulation, feature selection, regression analysis, time series prediction, and series fit calculation. A paper is attached to the package for reference.
Finding hidden clusters in structured data can be hindered by the presence of masking variables. If not detected, masking variables are used to calculate the overall similarities between units, and therefore the cluster attribution is more imprecise. The algorithm q-vars implements an optimization method to find the variables that most separate units between clusters. In this way, masking variables can be discarded from the data frame and the clustering is more accurate. Tests can be found in Benati et al.(2017) <doi:10.1080/01605682.2017.1398206>.
This package provides functions to compute Euclidean minimum spanning trees using single-, sesqui-, and dual-tree Boruvka algorithms. Thanks to K-d trees, they are fast in spaces of low intrinsic dimensionality. Mutual reachability distances (used in the definition of the HDBSCAN* algorithm) are also supported. The package also features relatively fast fallback minimum spanning tree and nearest-neighbours algorithms for spaces of higher dimensionality. The Python version of quitefastmst is available via PyPI'.
Various data sets (stocks, stock indices, constituent data, FX, zero-coupon bond yield curves, volatility, commodities) for Quantitative Risk Management practice.