Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Process complex impedance sensing datasets, including those generated by ECIS, xCELLigence and cellZscope instruments. Data can be imported to a standardised tidy format and then plotted. Support for conducting and plotting the outputs of ANOVA (with appropriate tests of statistical assumptions) and cross-correlation analysis. For data processed using this package see Hucklesby et al. (2020) <doi:10.3390/bios11050159>.
An implementation of the Verhoeff algorithm for calculating check digits (Verhoeff, J. (1969) <doi:10.1002/zamm.19710510323>). Functions are provided to calculate a check digit given an input number, calculate and append a check digit to an input number, and validate that a check digit is correct given an input number.
To visualize the probabilities of early termination, fail and success of Simon's two-stage design. To evaluate and visualize the operating characteristics of Simon's two-stage design.
Export dataframes and automatically start importing into Vorteks'. Vorteks Visualization Environment (VVE) and Vorteks Data Manager (VDM) will start an import. Vorteks Processing Environment (VPE) will start a new project and add a file reader with the dataframe file already set. Warning: WINDOWS ONLY. Requires installation of Vorteks software.
This package provides a comprehensive R interface to the VirusTotal API (v2 and v3), a Google service that analyzes files and URLs for viruses, worms, trojans and other malware. Features include file/URL scanning, domain categorization, passive DNS information, IP reputation analysis, and comment/voting systems. Implements rate limiting, error handling, and response validation for robust security analysis workflows.
This package contains functions for visualization univariate data: ccdplot and qddplot.
This package provides a robust and reproducible pipeline for extracting, cleaning, and analyzing athlete performance data generated by VALD ForceDecks systems. The package supports batch-oriented data processing for large datasets, standardized data transformation workflows, and visualization utilities for sports science research and performance monitoring. It is designed to facilitate reproducible analysis across multiple sports with comprehensive documentation and error handling.
Static and dynamic 3D plots to be used with ordination results and in diversity analysis, especially with the vegan package.
This package provides a reference implementation of the Vertical Weighted Strips method explored by Raim, Livsey, and Irimata (2025) <doi:10.48550/arXiv.2401.09696> for rejection sampling.
Facilitates modeling species ecological niches and geographic distributions based on occurrences and environments that have a vertical as well as horizontal component, and projecting models into three-dimensional geographic space. Working in three dimensions is useful in an aquatic context when the organisms one wishes to model can be found across a wide range of depths in the water column. The package also contains functions to automatically generate marine training model training regions using machine learning, and interpolate and smooth patchily sampled environmental rasters using thin plate splines. Davis Rabosky AR, Cox CL, Rabosky DL, Title PO, Holmes IA, Feldman A, McGuire JA (2016) <doi:10.1038/ncomms11484>. Nychka D, Furrer R, Paige J, Sain S (2021) <doi:10.5065/D6W957CT>. Pateiro-Lopez B, Rodriguez-Casal A (2022) <https://CRAN.R-project.org/package=alphahull>.
This package provides a suite of easy to use functions for collecting social media data and generating networks for analysis. Supports Mastodon, YouTube, Reddit and Web 1.0 data sources.
Estimates the predicted 10-year cardiovascular (CVD) risk score (in probability) for civilian women, women military service members and veterans by inputting patient profiles. The proposed women CVD risk score improves the accuracy of the existing American College of Cardiology/American Heart Association CVD risk assessment tool in predicting longâ term CVD risk for VA women, particularly in young and racial/ethnic minority women. See the reference: Jeonâ Slaughter, H., Chen, X., Tsai, S., Ramanan, B., & Ebrahimi, R. (2021) <doi:10.1161/JAHA.120.019217>.
This package provides a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains. Hutto & Gilbert (2014) <https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109/8122>.
By creating crowd-sourcing tasks that can be easily posted and results retrieved using Amazon's Mechanical Turk (MTurk) API, researchers can use this solution to validate the quality of topics obtained from unsupervised or semi-supervised learning methods, and the relevance of topic labels assigned. This helps ensure that the topic modeling results are accurate and useful for research purposes. See Ying and others (2022) <doi:10.1101/2023.05.02.538599>. For more information, please visit <https://github.com/Triads-Developer/Topic_Model_Validation>.
The d3.js framework with the plugins d3-voronoi-map, d3-voronoi-treemap and d3-weighted-voronoi are used to generate Voronoi treemaps in R and in a shiny application. The computation of the Voronoi treemaps are based on Nocaj and Brandes (2012) <doi:10.1111/j.1467-8659.2012.03078.x>.
This package provides probability density, cumulative distribution, quantile, and random number generation functions for the Vasicek distribution. In addition, two functions are available for fitting Generalized Additive Models for Location, Scale and Shape introduced by Rigby and Stasinopoulos (2005, <doi:10.1111/j.1467-9876.2005.00510.x>). Some functions are written in C++ using Rcpp', developed by Eddelbuettel and Francois (2011, <doi:10.18637/jss.v040.i08>).
Collection of common methods to determine growing season length in a simple manner. Start and end dates of the vegetation periods are calculated solely based on daily mean temperatures and the day of the year.
This package provides a set of functions for generating HTML to embed hosted video in your R Markdown documents or Shiny applications.
Inference methods for state-space models, relying on the Kalman Filter or on Viking (Variational Bayesian VarIance tracKING). See J. de Vilmarest (2022) <https://theses.hal.science/tel-03716104/>.
An implementation of the Likelihood ratio Test (LRT) for testing that, in a (non)linear mixed effects model, the variances of a subset of the random effects are equal to zero. There is no restriction on the subset of variances that can be tested: for example, it is possible to test that all the variances are equal to zero. Note that the implemented test is asymptotic. This package should be used on model fits from packages nlme', lmer', and saemix'. Charlotte Baey and Estelle Kuhn (2019) <doi:10.18637/jss.v107.i06>.
Conducts linear regression using variational Bayesian inference, particularly optimized for genome-wide association mapping and whole-genome prediction which use a number of DNA markers as the explanatory variables. Provides seven regression models which select the important variables (i.e., the variables related to response variables) among the given explanatory variables in different ways (i.e., model structures).
Offers a wide range of functions for reading and writing data in various file formats, including CSV, RDS, Excel and ZIP files. Additionally, it provides functions for retrieving metadata associated with files, such as file size and creation date, making it easy to manage and organize large data sets. This package is designed to simplify data import and export tasks, and provide users with a comprehensive set of tools to work with different types of data files.
Utilities for verifying discrete, continuous and probabilistic forecasts, and forecasts expressed as parametric distributions are included.
The goal of vetiver is to provide fluent tooling to version, share, deploy, and monitor a trained model. Functions handle both recording and checking the model's input data prototype, and predicting from a remote API endpoint. The vetiver package is extensible, with generics that can support many kinds of models.