Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The MicrobiomeBenchmarkData package provides functionality to access microbiome datasets suitable for benchmarking. These datasets have some biological truth, which allows to have expected results for comparison. The datasets come from various published sources and are provided as TreeSummarizedExperiment objects. Currently, only datasets suitable for benchmarking differential abundance methods are available.
Different data resources for microRNAs and some functions for manipulating them.
Affymetrix Affymetrix Mouse430_2 Array annotation data (chip mouse4302) assembled using data from public repositories.
This package implements the inference of candidate master regulator proteins from multi-omics data (MOMA) algorithm, as well as ancillary analysis and visualization functions.
This package provides a package containing an environment representing the MG_U74B.cdf file.
FHCRC Genomics Shared Resource Mu22v3 Annotation Data (Mu22v3) assembled using data from public repositories.
MEDME allows the prediction of absolute and relative methylation levels based on measures obtained by MeDIP-microarray experiments.
This is an R/shiny package to perform functional enrichment analysis for microbiome data. This package was based on clusterProfiler. Moreover, MicrobiomeProfiler support KEGG enrichment analysis, COG enrichment analysis, Microbe-Disease association enrichment analysis, Metabo-Pathway analysis.
Package performs summarization of replicates, filtering by frequency, several different options for imputing missing data, and a variety of options for transforming, batch correcting, and normalizing data.
Epigenome-wide association studies (EWAS) detects a large number of DNA methylation differences, often hundreds of differentially methylated regions and thousands of CpGs, that are significantly associated with a disease, many are located in non-coding regions. Therefore, there is a critical need to better understand the functional impact of these CpG methylations and to further prioritize the significant changes. MethReg is an R package for integrative modeling of DNA methylation, target gene expression and transcription factor binding sites data, to systematically identify and rank functional CpG methylations. MethReg evaluates, prioritizes and annotates CpG sites with high regulatory potential using matched methylation and gene expression data, along with external TF-target interaction databases based on manually curation, ChIP-seq experiments or gene regulatory network analysis.
This package holds the database for miRNAtap.
This package implements methods for testing multiple mediators.
msPurity R package was developed to: 1) Assess the spectral quality of fragmentation spectra by evaluating the "precursor ion purity". 2) Process fragmentation spectra. 3) Perform spectral matching. What is precursor ion purity? -What we call "Precursor ion purity" is a measure of the contribution of a selected precursor peak in an isolation window used for fragmentation. The simple calculation involves dividing the intensity of the selected precursor peak by the total intensity of the isolation window. When assessing MS/MS spectra this calculation is done before and after the MS/MS scan of interest and the purity is interpolated at the recorded time of the MS/MS acquisition. Additionally, isotopic peaks can be removed, low abundance peaks are removed that are thought to have limited contribution to the resulting MS/MS spectra and the isolation efficiency of the mass spectrometer can be used to normalise the intensities used for the calculation.
Classification of pediatric tumors into biologically defined subtypes is challenging and multifaceted approaches are needed. For this aim, we developed a diagnostic classifier based on DNA methylation profiles. We offer MethPed as an easy-to-use toolbox that allows researchers and clinical diagnosticians to test single samples as well as large cohorts for subclass prediction of pediatric brain tumors. The current version of MethPed can classify the following tumor diagnoses/subgroups: Diffuse Intrinsic Pontine Glioma (DIPG), Ependymoma, Embryonal tumors with multilayered rosettes (ETMR), Glioblastoma (GBM), Medulloblastoma (MB) - Group 3 (MB_Gr3), Group 4 (MB_Gr3), Group WNT (MB_WNT), Group SHH (MB_SHH) and Pilocytic Astrocytoma (PiloAstro).
This package is designed for the import, quality control, analysis, and visualization of methylation data generated using Sequenom's MassArray platform. The tools herein contain a highly detailed amplicon prediction for optimal assay design. Also included are quality control measures of data, such as primer dimer and bisulfite conversion efficiency estimation. Methylation data are calculated using the same algorithms contained in the EpiTyper software package. Additionally, automatic SNP-detection can be used to flag potentially confounded data from specific CG sites. Visualization includes barplots of methylation data as well as UCSC Genome Browser-compatible BED tracks. Multiple assays can be positionally combined for integrated analysis.
Agilent Chips that use Agilent design number 026655 annotation data (chip MmAgilentDesign026655) assembled using data from public repositories.
This package provides a package containing an environment representing the miRNA-1_0.CDF file.
Codelink UniSet Mouse 20k I Bioarray annotation data (chip m20kcod) assembled using data from public repositories.
The missRows package implements the MI-MFA method to deal with missing individuals ('biological units') in multi-omics data integration. The MI-MFA method generates multiple imputed datasets from a Multiple Factor Analysis model, then the yield results are combined in a single consensus solution. The package provides functions for estimating coordinates of individuals and variables, imputing missing individuals, and various diagnostic plots to inspect the pattern of missingness and visualize the uncertainty due to missing values.
Affymetrix Affymetrix MG_U74C Array annotation data (chip mgu74c) assembled using data from public repositories.
Data from human (HG18) 4plex NimbleGen array. It has 24k genes with 3 60mer probes per gene.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MG-U74B\_probe\_tab.
MetCirc comprises a workflow to interactively explore high-resolution MS/MS metabolomics data. MetCirc uses the Spectra object infrastructure defined in the package Spectra that stores MS/MS spectra. MetCirc offers functionality to calculate similarity between precursors based on the normalised dot product, neutral losses or user-defined functions and visualise similarities in a circular layout. Within the interactive framework the user can annotate MS/MS features based on their similarity to (known) related MS/MS features.
This package provides a SummarizedExperiment object of read counts for microRNAs across tissues, cell-types, and cancer cell-lines. The read count matrix was prepared and provided by the author of the study: Towards the human cellular microRNAome.