Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package creates a data frame with the residuals of partial regressions of the main explanatory variable and the variable of interest. This method follows the Frisch-Waugh-Lovell theorem, as explained in Lovell (2008) <doi:10.3200/JECE.39.1.88-91>.
Location- and scale-invariant Box-Cox and Yeo-Johnson power transformations allow for transforming variables with distributions distant from 0 to normality. Transformers are implemented as S4 objects. These allow for transforming new instances to normality after optimising fitting parameters on other data. A test for central normality allows for rejecting transformations that fail to produce a suitably normal distribution, independent of sample number.
Shiny app to interactively visualize hierarchical clustering with prototypes. For details on hierarchical clustering with prototypes, see Bien and Tibshirani (2011) <doi:10.1198/jasa.2011.tm10183>. This package currently launches the application.
This package provides tools for Bayesian power analysis and assurance calculations using the statistical frameworks of brms and INLA'. Includes simulation-based approaches, support for multiple decision rules (direction, threshold, ROPE), sequential designs, and visualisation helpers. Methods are based on Kruschke (2014, ISBN:9780124058880) "Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan", O'Hagan & Stevens (2001) <doi:10.1177/0272989X0102100307> "Bayesian Assessment of Sample Size for Clinical Trials of Cost-Effectiveness", Kruschke (2018) <doi:10.1177/2515245918771304> "Rejecting or Accepting Parameter Values in Bayesian Estimation", Rue et al. (2009) <doi:10.1111/j.1467-9868.2008.00700.x> "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations", and Bürkner (2017) <doi:10.18637/jss.v080.i01> "brms: An R Package for Bayesian Multilevel Models using Stan".
This package provides a collection of functions to do model-based phylogenetic analysis. It includes functions to calculate community phylogenetic diversity, to estimate correlations among functional traits while accounting for phylogenetic relationships, and to fit phylogenetic generalized linear mixed models. The Bayesian phylogenetic generalized linear mixed models are fitted with the INLA package (<https://www.r-inla.org>).
R's implementation of the JavaScript library path-to-regexp', it aims to provide R web frameworks features such as parameter handling among other URL path utilities.
Identification of the most appropriate pharmacotherapy for each patient based on genomic alterations is a major challenge in personalized oncology. PANACEA is a collection of personalized anti-cancer drug prioritization approaches utilizing network methods. The methods utilize personalized "driverness" scores from driveR to rank drugs, mapping these onto a protein-protein interaction network. The "distance-based" method scores each drug based on these scores and distances between drugs and genes to rank given drugs. The "RWR" method propagates these scores via a random-walk with restart framework to rank the drugs. The methods are described in detail in Ulgen E, Ozisik O, Sezerman OU. 2023. PANACEA: network-based methods for pharmacotherapy prioritization in personalized oncology. Bioinformatics <doi:10.1093/bioinformatics/btad022>.
Miscellaneous small utilities are provided to mitigate issues with messy, inconsistent or high dimensional data and help for preprocessing and preparing analyses.
This package implements the Bi-objective Lexicographical Classification method and Performance Assessment Ratio at 10% metric for algorithm classification. Constructs matrices representing algorithm performance under multiple criteria, facilitating decision-making in algorithm selection and evaluation. Analyzes and compares algorithm performance based on various metrics to identify the most suitable algorithms for specific tasks. This package includes methods for algorithm classification and evaluation, with examples provided in the documentation. Carvalho (2019) presents a statistical evaluation of algorithmic computational experimentation with infeasible solutions <doi:10.48550/arXiv.1902.00101>. Moreira and Carvalho (2023) analyze power in preprocessing methodologies for datasets with missing values <doi:10.1080/03610918.2023.2234683>.
Supplementary utils for CRAN maintainers and R packages developers. Validating the library, packages and lock files. Exploring a complexity of a specific package like evaluating its size in bytes with all dependencies. The shiny app complexity could be explored too. Assessing the life duration of a specific package version. Checking a CRAN package check page status for any errors and warnings. Retrieving a DESCRIPTION or NAMESPACE file for any package version. Comparing DESCRIPTION or NAMESPACE files between different package versions. Getting a list of all releases for a specific package. The Bioconductor is partly supported.
This package implements an extension of the Chacko chi-square test for ordered vectors (Chacko, 1966, <https://www.jstor.org/stable/25051572>). Our extension brings the Chacko test to the computer age by implementing a permutation test to offer a numeric estimate of the p-value, which is particularly useful when the analytic solution is not available.
This package provides a simple way to add page numbers to base/ggplot/lattice graphics.
This package provides functions for calculating and analyzing the proliferative index (PI) from an RNA-seq dataset. As described in Ramaker & Lasseigne, et al. bioRxiv, 2016 <doi:10.1101/063057>.
This package provides a collection of software provides R support for ADMB (Automatic Differentiation Model Builder) and a GUI interface facilitates the conversion of ADMB template code to C code followed by compilation to a binary executable. Stand-alone functions can also be run by users not interested in clicking a GUI'.
Partial Least Squares Path Modeling (PLS-PM), Tenenhaus, Esposito Vinzi, Chatelin, Lauro (2005) <doi:10.1016/j.csda.2004.03.005>, analysis for both metric and non-metric data, as well as REBUS analysis, Esposito Vinzi, Trinchera, Squillacciotti, and Tenenhaus (2008) <doi:10.1002/asmb.728>.
This package provides a collection of functions to simulate, estimate and forecast a wide range of regression based dynamic models for positive time series. This package implements the results presented in Prass, T.S.; Pumi, G.; Taufemback, C.G. and Carlos, J.H. (2025). "Positive time series regression models: theoretical and computational aspects". Computational Statistics 40, 1185â 1215. <doi:10.1007/s00180-024-01531-z>.
To calculate the raw, central and standardized moments from distribution parameters. To solve the distribution parameters based on user-provided mean, standard deviation, skewness and kurtosis. Normal, skew-normal, skew-t and Tukey g-&-h distributions are supported, for now.
This package provides an implementation of particle swarm optimisation consistent with the standard PSO 2007/2011 by Maurice Clerc. Additionally a number of ancillary routines are provided for easy testing and graphics.
This package provides a simple interface in the form of R6 classes for executing tasks in parallel, tracking their progress, and displaying accurate progress bars.
This package provides a new metric named dependency heaviness is proposed that measures the number of additional dependency packages that a parent package brings to its child package and are unique to the dependency packages imported by all other parents. The dependency heaviness analysis is visualized by a customized heatmap. The package is described in <doi:10.1093/bioinformatics/btac449>. We have also performed the dependency heaviness analysis on the CRAN/Bioconductor package ecosystem and the results are implemented as a web-based database which provides comprehensive tools for querying dependencies of individual R packages. The systematic analysis on the CRAN/Bioconductor ecosystem is described in <doi:10.1016/j.jss.2023.111610>. From pkgndep version 2.0.0, the heaviness database includes snapshots of the CRAN/Bioconductor ecosystems for many old R versions.
This package provides a tool, grammar, and standard to represent and exchange R package source code as text files. Converts one or more source packages to a text file and restores the package structures from the file.
Calculate parametric mortality and Fertility models, following packages BaSTA in Colchero, Jones and Rebke (2012) <doi:10.1111/j.2041-210X.2012.00186.x> and BaFTA <https://github.com/fercol/BaFTA>, summary statistics (e.g. ageing rates, life expectancy, lifespan equality, etc.), life table and product limit estimators from census data.
This package implements Penalized Regression with Inferred Seasonality Module (PRISM) to generate forecast estimation of weekly unemployment initial claims using Google Trends data. It includes required data and tools for backtesting the performance in 2007-2020.
This package implements tools for the analysis of partially ordered data, with a particular focus on the evaluation of multidimensional systems of indicators and on the analysis of poverty. References, Fattore M. (2016) <doi:10.1007/s11205-015-1059-6> Fattore M., Arcagni A. (2016) <doi:10.1007/s11205-016-1501-4> Arcagni A. (2017) <doi:10.1007/978-3-319-45421-4_19>.