Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create network-style visualizations of pairwise relationships using custom edge glyphs built on top of ggplot2'. The package supports both statistical and non-statistical data and allows users to represent directed relationships. This enables clear, publication-ready graphics for exploring and communicating relational structures in a wide range of domains. The method was first used in Abu-Akel et al. (2021) <doi:10.1371/journal.pone.0245100>. Code is released under the MIT License; included datasets are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0).
Platform dedicated to the Global Modelling technique. Its aim is to obtain ordinary differential equations of polynomial form directly from time series. It can be applied to single or multiple time series under various conditions of noise, time series lengths, sampling, etc. This platform is developped at the Centre d'Etudes Spatiales de la Biosphere (CESBIO), UMR 5126 UPS/CNRS/CNES/IRD, 18 av. Edouard Belin, 31401 TOULOUSE, FRANCE. The developments were funded by the French program Les Enveloppes Fluides et l'Environnement (LEFE, MANU, projets GloMo, SpatioGloMo and MoMu). The French program Defi InFiNiTi (CNRS) and PNTS are also acknowledged (projects Crops'IChaos and Musc & SlowFast). The method is described in the article : Mangiarotti S. and Huc M. (2019) <doi:10.1063/1.5081448>.
Draws gene or genome maps and comparisons between these, in a publication-grade manner. Starting from simple, common files, it will draw postscript or PDF files that can be sent as such to journals.
An easy way to create responsive layouts with just a few lines of code. You can create boxes that are draggable and resizable and load predefined Layouts. The package serves as a wrapper to allow for easy integration of the gridstack.js functionalities <https://github.com/gridstack/gridstack.js>.
This package implements a novel method for privatizing network data using differential privacy. Provides functions for generating synthetic networks based on LSM (Latent Space Model), applying differential privacy to network latent positions to achieve overall network privatization, and evaluating the utility of privatized networks through various network statistics. The privatize and evaluate functions support both LSM and RDPG (Random Dot Product Graph). For generating RDPG networks, users are encouraged to use the randnet package <https://CRAN.R-project.org/package=randnet>. For more details, see the "proposed method" section of Liu, Bi, and Li (2025) <doi:10.48550/arXiv.2507.00402>.
Statistical analysis of monthly background checks of gun purchases for the New York Times story "What Drives Gun Sales: Terrorism, Obama and Calls for Restrictions" at <http://www.nytimes.com/interactive/2015/12/10/us/gun-sales-terrorism-obama-restrictions.html?> is provided.
This package implements the generalized propensity score cumulative distribution function proposed by Greene (2017) <https://digitalcommons.library.tmc.edu/dissertations/AAI10681743/>. A single scalar balancing score is calculated for any generalized propensity score vector with three or more treatments. This balancing score is used for propensity score matching and stratification in outcome analyses when analyzing either ordinal or multinomial treatments.
Fit joint models of survival and multivariate longitudinal data. The longitudinal data is specified by generalised linear mixed models. The joint models are fit via maximum likelihood using an approximate expectation maximisation algorithm. Bernhardt (2015) <doi:10.1016/j.csda.2014.11.011>.
Designed to facilitate the preprocessing and linking of GIS (Geographic Information System) databases <https://www.sciencedirect.com/topics/computer-science/gis-database>, the R package GISINTEGRATION offers a robust solution for efficiently preparing GIS data for advanced spatial analyses. This package excels in simplifying intrica procedures like data cleaning, normalization, and format conversion, ensuring that the data are optimally primed for precise and thorough analysis.
This package provides a Kriging method for functional datasets with spatial dependency. This functional Kriging method avoids the need to estimate the trace-variogram, and the curve is estimated by minimizing a quadratic form. The curves in the functional dataset are smoothed using Fourier series. The functional Kriging of this package is a modification of the method proposed by Giraldo (2011) <doi:10.1007/s10651-010-0143-y>.
This package provides a dataset about movies. This was previously contained in ggplot2, but has been moved its own package to reduce the download size of ggplot2.
This function is an extension of the Small Area Estimation (SAE) model. Geoadditive Small Area Model is a combination of the geoadditive model with the Small Area Estimation (SAE) model, by adding geospatial information to the SAE model. This package refers to J.N.K Rao and Isabel Molina (2015, ISBN: 978-1-118-73578-7), Bocci, C., & Petrucci, A. (2016)<doi:10.1002/9781118814963.ch13>, and Ardiansyah, M., Djuraidah, A., & Kurnia, A. (2018)<doi:10.21082/jpptp.v2n2.2018.p101-110>.
An RStudio addin for teaching and learning making plot using the ggplot2 package. You can learn each steps of making plot by clicking your mouse without coding. You can get resultant code for the plot.
This package implements the generalized integration model, which integrates individual-level data and summary statistics under a generalized linear model framework. It supports continuous and binary outcomes to be modeled by the linear and logistic regression models. For binary outcome, data can be sampled in prospective cohort studies or case-control studies. Described in Zhang et al. (2020)<doi:10.1093/biomet/asaa014>.
Circular genomic permutation approach uses genome wide association studies (GWAS) results to establish the significance of pathway/gene-set associations whilst accounting for genomic structure(Cabrera et al (2012) <doi:10.1534/g3.112.002618>). All single nucleotide polymorphisms (SNPs) in the GWAS are placed in a circular genome according to their location. Then the complete set of SNP association p-values are permuted by rotation with respect to the SNPs genomic locations. Two testing frameworks are available: permutations at the gene level, and permutations at the SNP level. The permutation at the gene level uses Fisher's combination test to calculate a single gene p-value, followed by the hypergeometric test. The SNP count methodology maps each SNP to pathways/gene-sets and calculates the proportion of SNPs for the real and the permutated datasets above a pre-defined threshold. Genomicper requires a matrix of GWAS association p-values and SNPs annotation to genes. Pathways can be obtained from within the package or can be provided by the user.
Efficient algorithms for fitting generalized linear and additive models with group elastic net penalties as described in Helwig (2025) <doi:10.1080/10618600.2024.2362232>. Implements group LASSO, group MCP, and group SCAD with an optional group ridge penalty. Computes the regularization path for linear regression (gaussian), multivariate regression (multigaussian), smoothed support vector machines (svm1), squared support vector machines (svm2), logistic regression (binomial), multinomial logistic regression (multinomial), log-linear count regression (poisson and negative.binomial), and log-linear continuous regression (gamma and inverse gaussian). Supports default and formula methods for model specification, k-fold cross-validation for tuning the regularization parameters, and nonparametric regression via tensor product reproducing kernel (smoothing spline) basis function expansion.
Set of functions designed to solve inverse problems. The direct problem is used to calculate a cost function to be minimized. Here are listed some papers using Inverse Problems solvers and sensitivity analysis: (Jader Lugon Jr.; Antonio J. Silva Neto 2011) <doi:10.1590/S1678-58782011000400003>. (Jader Lugon Jr.; Antonio J. Silva Neto; Pedro P.G.W. Rodrigues 2008) <doi:10.1080/17415970802082864>. (Jader Lugon Jr.; Antonio J. Silva Neto; Cesar C. Santana 2008) <doi:10.1080/17415970802082922>.
Implementation of spatial graph-theoretic genetic gravity models. The model framework is applicable for other types of spatial flow questions. Includes functions for constructing spatial graphs, sampling and summarizing associated raster variables and building unconstrained and singly constrained gravity models.
Statistical testing procedures for detecting GxE (gene-environment) interactions. The main focus lies on GRSxE interaction tests that aim at detecting GxE interactions through GRS (genetic risk scores). Moreover, a novel testing procedure based on bagging and OOB (out-of-bag) predictions is implemented for incorporating all available observations at both GRS construction and GxE testing (Lau et al., 2023, <doi:10.1038/s41598-023-28172-4>).
The multiple contrast tests for univariate were proposed by Munko, Ditzhaus, Pauly, Smaga, and Zhang (2023) <doi:10.48550/arXiv.2306.15259>. Recently, they were extended to the multivariate functional data in Munko, Ditzhaus, Pauly, and Smaga (2024) <doi:10.48550/arXiv.2406.01242>. These procedures enable us to evaluate the overall hypothesis regarding equality, as well as specific hypotheses defined by contrasts. In particular, we can perform post hoc tests to examine particular comparisons of interest. Different experimental designs are supported, e.g., one-way and multi-way analysis of variance for functional data.
This package provides a group-specific recommendation system to use dependency information from users and items which share similar characteristics under the singular value decomposition framework. Refer to paper A Group-Specific Recommender System <doi:10.1080/01621459.2016.1219261> for the details.
Conducts causal inference with interactive fixed-effect models. It imputes counterfactuals for each treated unit using control group information based on a linear interactive fixed effects model that incorporates unit-specific intercepts interacted with time-varying coefficients. This method generalizes the synthetic control method to the case of multiple treated units and variable treatment periods, and improves efficiency and interpretability.
Interact with the Google Tag Manager API <https://developers.google.com/tag-platform/tag-manager/api/v2>, enabling scripted deployments and updates across multiple tags, triggers, variables and containers.
Discrete scales for the colorblind-friendly Okabe-Ito palette, including color', fill', and edge_colour'. ggokabeito provides ggplot2 and ggraph scales to easily use the Okabe-Ito palette in your data visualizations.