Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We propose an objective Bayesian algorithm for searching the space of Gaussian directed acyclic graph (DAG) models. The algorithm uses moment fractional Bayes factors (MFBF) and is suitable for learning sparse graphs. The algorithm is implemented using Armadillo, an open-source C++ linear algebra library.
Easy way to plot regular/weighted/conditional distributions by using formulas. The core of the package concerns distribution plots which are automatic: the many options are tailored to the data at hand to offer the nicest and most meaningful graphs possible -- with no/minimum user input. Further provide functions to plot conditional trends and box plots. See <https://lrberge.github.io/fplot/> for more information.
This package provides a collection of four datasets based around the population dynamics of migratory fish. Datasets contain both basic size information on a per fish basis, as well as otolith data that contains a per day record of fish growth history. All data in this package was collected by the author, from 2015-2016, in the Wellington region of New Zealand.
This package provides a shiny application based on FossilSim'. Used for simulating tree, taxonomic and fossil data under mechanistic models of speciation, preservation and sampling.
Computer Modern font with Paul Murrell's symbol extensions. Is is to be used with the **extrafont** package. When this font package is installed, the CM fonts will be available for PDF or Postscript output files; however, this will (probably) not make the font available for screen or bitmap output files.
Calculates the fused extended two-way fixed effects (FETWFE) estimator for unbiased and efficient estimation of difference-in-differences in panel data with staggered treatment adoption. This estimator eliminates bias inherent in conventional two-way fixed effects estimators, while also employing a novel bridge regression regularization approach to improve efficiency and yield valid standard errors. Also implements extended TWFE (etwfe) and bridge-penalized ETWFE (betwfe). Provides S3 classes for streamlined workflow and supports flexible tuning (ridge and rank-condition guarantees), automatic covariate centering/scaling, and detailed overall and cohort-specific effect estimates with valid standard errors. Includes simulation and formatting utilities, extensive diagnostic tools, vignettes, and examples. See Faletto (2025) (<doi:10.48550/arXiv.2312.05985>).
This package provides a collection of utility functions to download and manage data sets from the Internet or from other sources.
New approaches to parallel coordinates plots for multivariate data visualization, including applications to clustering, outlier hunting and regression diagnostics. Includes general functions for multivariate nonparametric density and regression estimation, using parallel computation.
This package provides four addons for analyzing trends and unit roots in financial time series: (i) functions for the density and probability of the augmented Dickey-Fuller Test, (ii) functions for the density and probability of MacKinnon's unit root test statistics, (iii) reimplementations for the ADF and MacKinnon Test, and (iv) an urca Unit Root Test Interface for Pfaff's unit root test suite.
Frequentist assisted by Bayes (FAB) p-values and confidence interval construction. See Hoff (2019) <arXiv:1907.12589> "Smaller p-values via indirect information", Hoff and Yu (2019) <doi:10.1214/18-EJS1517> "Exact adaptive confidence intervals for linear regression coefficients", and Yu and Hoff (2018) <doi:10.1093/biomet/asy009> "Adaptive multigroup confidence intervals with constant coverage".
This package implements various methods for estimating fractal dimension of time series and 2-dimensional data <doi:10.1214/11-STS370>.
This is a package for implementation of Flury-Gautschi algorithms.
Analysis of Fluorescence Recovery After Photobleaching (FRAP) experiments using nonlinear mixed-effects regression models and analysis of the results. FRApp is not limited to the analysis of FRAP experiments only. Any nonlinear mixed-effects models with an asymptotic exponential functional relationship to hierarchical data in various domains can be fitted. The analysis of data available in the package is presented in Di Credico, G., Pelucchi, S., Pauli, F. et al. (2025) <doi:10.1038/s41598-025-87154-w>.
It provides classifiers which can be used for discrete variables and for continuous variables based on the Naive Bayes and Fuzzy Naive Bayes hypothesis. Those methods were developed by researchers belong to the Laboratory of Technologies for Virtual Teaching and Statistics (LabTEVE) and Laboratory of Applied Statistics to Image Processing and Geoprocessing (LEAPIG) at Federal University of Paraiba, Brazil'. They considered some statistical distributions and their papers were published in the scientific literature, as for instance, the Gaussian classifier using fuzzy parameters, proposed by Moraes, Ferreira and Machado (2021) <doi:10.1007/s40815-020-00936-4>.
Fuzzy inference systems are based on fuzzy rules, which have a good capability for managing progressive phenomenons. This package is a basic implementation of the main functions to use a Fuzzy Inference System (FIS) provided by the open source software FisPro <https://www.fispro.org>. FisPro allows to create fuzzy inference systems and to use them for reasoning purposes, especially for simulating a physical or biological system.
This package provides tools to support sensible statistics for functional response analysis.
This package provides a tidy R interface for count time series analysis. It includes implementation of the INGARCH (Integer Generalized Autoregressive Conditional Heteroskedasticity) model from the tscount package and the GLARMA (Generalized Linear Autoregressive Moving Averages) model from the glarma package. Additionally, it offers automated parameter selection algorithms based on the minimization of a penalized likelihood.
This package provides functions for selecting attributes from a given dataset. Attribute subset selection is the process of identifying and removing as much of the irrelevant and redundant information as possible.
This contains functions that can be used to estimate a smoothed and a non-smoothed (empirical) time-dependent receiver operating characteristic curve and the corresponding area under the receiver operating characteristic curve for correlated right-censored time-to-event data. See Beyene and Chen (2024) <doi:10.1177/09622802231220496>.
Creates, manipulates, and evaluates hemodynamic response functions and event-related regressors for functional magnetic resonance imaging data analysis. Supports multiple basis sets including Canonical, Gamma, Gaussian, B-spline, and Fourier bases. Features decorators for time-shifting and blocking, and efficient convolution algorithms for regressor construction. Methods are based on standard fMRI analysis techniques as described in Jezzard et al. (2001, ISBN:9780192630711).
This package provides a flexible permutation framework for making inference such as point estimation, confidence intervals or hypothesis testing, on any kind of data, be it univariate, multivariate, or more complex such as network-valued data, topological data, functional data or density-valued data.
Flipbooks present code step-by-step and side-by-side with its output. flipbookr helps creators build flipbooks efficiently because code pipelines are automatically parsed and prepped for presentation as flipbooks.
Contingency Tables are a pain to work with when you want to run regressions. This package takes them, flattens them into a long data frame, so you can more easily analyse them! As well, you can calculate other related statistics. All of this is done so in a tidy manner, so it should tie in nicely with tidyverse series of packages.
Implement frequent-directions algorithm for efficient matrix sketching. (Edo Liberty (2013) <doi:10.1145/2487575.2487623>).