Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Evolutionary game theory applies game theory to evolving populations in biology, see e.g. one of the books by Weibull (1994, ISBN:978-0262731218) or by Sandholm (2010, ISBN:978-0262195874) for more details. A comprehensive set of tools to illustrate the core concepts of evolutionary game theory, such as evolutionary stability or various evolutionary dynamics, for teaching and academic research is provided.
This package provides a principled framework for sampling Virtual Control Group (VCG) using energy distance-based covariate balancing. The package offers visualization tools to assess covariate balance and includes a permutation test to evaluate the statistical significance of observed deviations.
Computes the probability density and cumulative distribution functions of fourteen distributions used for the probabilistic hazard assessment. Estimates the model parameters of the distributions using the maximum likelihood and reports the goodness-of-fit statistics. The recurrence interval estimations of earthquakes are computed for each distribution.
Enables the automation of actions across the pipeline, including initial steps of transforming binocular data and gap repair to event-based processing such as fixations, saccades, and entry/duration in Areas of Interest (AOIs). It also offers visualisation of eye movement and AOI entries. These tools take relatively raw (trial, time, x, and y form) data and can be used to return fixations, saccades, and AOI entries and time spent in AOIs. As the tools rely on this basic data format, the functions can work with data from any eye tracking device. Implements fixation and saccade detection using methods proposed by Salvucci and Goldberg (2000) <doi:10.1145/355017.355028>.
Elastic net regression models are controlled by two parameters, lambda, a measure of shrinkage, and alpha, a metric defining the model's location on the spectrum between ridge and lasso regression. glmnet provides tools for selecting lambda via cross validation but no automated methods for selection of alpha. Elastic Net SearcheR automates the simultaneous selection of both lambda and alpha. Developed, in part, with support by NICHD R03 HD094912.
The algorithm of semi-supervised learning based on finite Gaussian mixture models with a missing-data mechanism is designed for a fitting g-class Gaussian mixture model via maximum likelihood (ML). It is proposed to treat the labels of the unclassified features as missing-data and to introduce a framework for their missing as in the pioneering work of Rubin (1976) for missing in incomplete data analysis. This dependency in the missingness pattern can be leveraged to provide additional information about the optimal classifier as specified by Bayesâ rule.
Density, distribution function, quantile function and random generation for the Kumaraswamy Complementary Weibull Geometric (Kw-CWG) lifetime probability distribution proposed in Afify, A.Z. et al (2017) <doi:10.1214/16-BJPS322>.
Given the omnipresence of the assumption of elliptical symmetry, it is essential to be able to test whether that assumption actually holds true or not for the data at hand. This package provides several statistical tests for elliptical symmetry that are described in Babic et al. (2021) <arXiv:2011.12560v2>.
Facilitates basic spatial edge correction to point pattern data.
This package provides a set of tools to perform Ecological Niche Modeling with presence-absence data. It includes algorithms for data partitioning, model fitting, calibration, evaluation, selection, and prediction. Other functions help to explore signals of ecological niche using univariate and multivariate analyses, and model features such as variable response curves and variable importance. Unique characteristics of this package are the ability to exclude models with concave quadratic responses, and the option to clamp model predictions to specific variables. These tools are implemented following principles proposed in Cobos et al., (2022) <doi:10.17161/bi.v17i.15985>, Cobos et al., (2019) <doi:10.7717/peerj.6281>, and Peterson et al., (2008) <doi:10.1016/j.ecolmodel.2007.11.008>.
The EUNIS habitat classification is a comprehensive pan-European system for habitat identification <https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification-1>. This is an R data package providing the EUNIS classification system. The classification is hierarchical and covers all types of habitats from natural to artificial, from terrestrial to freshwater and marine. The habitat types are identified by specific codes, names and descriptions and come with schema crosswalks to other habitat typologies.
Fit, plot and compare several (extreme value) distribution functions. Compute (truncated) distribution quantile estimates and plot return periods on a linear scale. On the fitting method, see Asquith (2011): Distributional Analysis with L-moment Statistics [...] ISBN 1463508417.
This package provides an implementation of the maximum likelihood methods for deriving Elo scores as published in Foerster, Franz et al. (2016) <DOI:10.1038/srep35404>.
Compute a cyclist's Eddington number, including efficiently computing cumulative E over a vector. A cyclist's Eddington number <https://en.wikipedia.org/wiki/Arthur_Eddington#Eddington_number_for_cycling> is the maximum number satisfying the condition such that a cyclist has ridden E miles or greater on E distinct days. The algorithm in this package is an improvement over the conventional approach because both summary statistics and cumulative statistics can be computed in linear time, since it does not require initial sorting of the data. These functions may also be used for computing h-indices for authors, a metric described by Hirsch (2005) <doi:10.1073/pnas.0507655102>. Both are specific applications of computing the side length of a Durfee square <https://en.wikipedia.org/wiki/Durfee_square>.
The univariate statistical quality control tool aims to address measurement error effects when constructing exponentially weighted moving average p control charts. The method primarily focuses on binary random variables, but it can be applied to any continuous random variables by using sign statistic to transform them to discrete ones. With the correction of measurement error effects, we can obtain the corrected control limits of exponentially weighted moving average p control chart and reasonably adjusted exponentially weighted moving average p control charts. The methods in this package can be found in some relevant references, such as Chen and Yang (2022) <arXiv: 2203.03384>; Yang et al. (2011) <doi: 10.1016/j.eswa.2010.11.044>; Yang and Arnold (2014) <doi: 10.1155/2014/238719>; Yang (2016) <doi: 10.1080/03610918.2013.763980> and Yang and Arnold (2016) <doi: 10.1080/00949655.2015.1125901>.
This package provides measures to characterize the complexity of classification and regression problems based on aspects that quantify the linearity of the data, the presence of informative feature, the sparsity and dimensionality of the datasets. This package provides bug fixes, generalizations and implementations of many state of the art measures. The measures are described in the papers: Lorena et al. (2019) <doi:10.1145/3347711> and Lorena et al. (2018) <doi:10.1007/s10994-017-5681-1>.
An alternative to Exploratory Factor Analysis (EFA) for metrical data in R. Drawing on characteristics of classical test theory, Exploratory Likert Scaling (ELiS) supports the user exploring multiple one-dimensional data structures. In common research practice, however, EFA remains the go-to method to uncover the (underlying) structure of a data set. Orthogonal dimensions and the potential of overextraction are often accepted as side effects. As described in Müller-Schneider (2001) <doi:10.1515/zfsoz-2001-0404>), ELiS confronts these problems. As a result, elisr provides the platform to fully exploit the exploratory potential of the multiple scaling approach itself.
This software downloads and manages air quality data from the European Environmental Agency (EEA) dataflow (<https://www.eea.europa.eu/data-and-maps/data/aqereporting-9>). See the web page <https://eeadmz1-downloads-webapp.azurewebsites.net/> for details on the EEA's Air Quality Download Service. The package allows dynamically mapping the stations, summarising and time aggregating the measurements and building spatial interpolation maps. See the web page <https://www.eea.europa.eu/en> for further information on EEA activities and history. Further details, as well as, an extended vignette of the main functions included in the package, are available at the GitHub web page dedicated to the project.
Empirical Bayes thresholding using the methods developed by I. M. Johnstone and B. W. Silverman. The basic problem is to estimate a mean vector given a vector of observations of the mean vector plus white noise, taking advantage of possible sparsity in the mean vector. Within a Bayesian formulation, the elements of the mean vector are modelled as having, independently, a distribution that is a mixture of an atom of probability at zero and a suitable heavy-tailed distribution. The mixing parameter can be estimated by a marginal maximum likelihood approach. This leads to an adaptive thresholding approach on the original data. Extensions of the basic method, in particular to wavelet thresholding, are also implemented within the package.
The EXPOS model uses a digital elevation model (DEM) to estimate exposed and protected areas for a given hurricane wind direction and inflection angle. The resulting topographic exposure maps can be combined with output from the HURRECON model to estimate hurricane wind damage across a region. For details on the original version of the EXPOS model written in Borland Pascal', see: Boose, Foster, and Fluet (1994) <doi:10.2307/2937142>, Boose, Chamberlin, and Foster (2001) <doi:10.1890/0012-9615(2001)071[0027:LARIOH]2.0.CO;2>, and Boose, Serrano, and Foster (2004) <doi:10.1890/02-4057>.
This package provides a comprehensive toolkit for discovering differential and difference equations from empirical time series data using symbolic regression. The package implements a complete workflow from data preprocessing (including Total Variation Regularized differentiation for noisy economic data), visual exploration of dynamical structure, and symbolic equation discovery via genetic algorithms. It leverages a high-performance Julia backend ('SymbolicRegression.jl') to provide industrial-grade robustness, physics-informed constraints, and rigorous out-of-sample validation. Designed for economists, physicists, and researchers studying dynamical systems from observational data.
It allows structuring electoral data of different size and structure to calculate various indicators frequently used in the studies of electoral systems and party systems. Indicators of electoral volatility, electoral disproportionality, party nationalization and the effective number of parties are included.
This package provides methods for fitting various extreme value distributions with parameters of generalised additive model (GAM) form are provided. For details of distributions see Coles, S.G. (2001) <doi:10.1007/978-1-4471-3675-0>, GAMs see Wood, S.N. (2017) <doi:10.1201/9781315370279>, and the fitting approach see Wood, S.N., Pya, N. & Safken, B. (2016) <doi:10.1080/01621459.2016.1180986>. Details of how evgam works and various examples are given in Youngman, B.D. (2022) <doi:10.18637/jss.v103.i03>.
Extracts Exchangeable Image File Format (EXIF) metadata, such as camera make and model, ISO speed and the date-time the picture was taken on, from JPEG images. Incorporates the easyexif <https://github.com/mayanklahiri/easyexif> library.