Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
FHCRC Nelson Lab mpedbarray Annotation Data (mpedbarray) assembled using data from public repositories.
Affymetrix mta10 annotation data (chip mta10transcriptcluster) assembled using data from public repositories.
Epigenome-wide association studies (EWAS) detects a large number of DNA methylation differences, often hundreds of differentially methylated regions and thousands of CpGs, that are significantly associated with a disease, many are located in non-coding regions. Therefore, there is a critical need to better understand the functional impact of these CpG methylations and to further prioritize the significant changes. MethReg is an R package for integrative modeling of DNA methylation, target gene expression and transcription factor binding sites data, to systematically identify and rank functional CpG methylations. MethReg evaluates, prioritizes and annotates CpG sites with high regulatory potential using matched methylation and gene expression data, along with external TF-target interaction databases based on manually curation, ChIP-seq experiments or gene regulatory network analysis.
This package holds the database for miRNAtap.
Different data resources for microRNAs and some functions for manipulating them.
contains eight technical replicate data set and a three replicate dilution series of the MS Qual/Quant Quality Control Mix standard sample (Sigma-Aldrich, Buchs, Switzerland) measured on five different mass spectrometer platforms at the Functional Genomics Center Zurich.
This package provides a method to identify differential expression genes in the same or different species. Given that non-DE genes have some similarities in features, a scaling-free minimum enclosing ball (SFMEB) model is built to cover those non-DE genes in feature space, then those DE genes, which are enormously different from non-DE genes, being regarded as outliers and rejected outside the ball. The method on this package is described in the article A minimum enclosing ball method to detect differential expression genes for RNA-seq data'. The SFMEB method is extended to the scMEB method that considering two or more potential types of cells or unknown labels scRNA-seq dataset DEGs identification.
The matchBox package enables comparing ranked vectors of features, merging multiple datasets, removing redundant features, using CAT-plots and Venn diagrams, and computing statistical significance.
Computes Mantel cluster correlations from a (p x n) numeric data matrix (e.g. microarray gene-expression data).
Affymetrix Affymetrix Mu19KsubA Array annotation data (chip mu19ksuba) assembled using data from public repositories.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MG-U74A\_probe\_tab.
MotifPeeker is used to compare and analyse datasets from epigenomic profiling methods with motif enrichment as the key benchmark. The package outputs an HTML report consisting of three sections: (1. General Metrics) Overview of peaks-related general metrics for the datasets (FRiP scores, peak widths and motif-summit distances). (2. Known Motif Enrichment Analysis) Statistics for the frequency of user-provided motifs enriched in the datasets. (3. De-Novo Motif Enrichment Analysis) Statistics for the frequency of de-novo discovered motifs enriched in the datasets and compared with known motifs.
This package provides functions for the analysis of data generated by the multiplex substrate profiling by mass spectrometry for proteases (MSP-MS) method. Data exported from upstream proteomics software is accepted as input and subsequently processed for analysis. Tools for statistical analysis, visualization, and interpretation of the data are provided.
Easily visualize and inspect microarrays for spatial artifacts.
This package provides methods for genetic finemapping in inbred mice by taking advantage of their very high homozygosity rate (>95%).
MeSH (Medical Subject Headings) is the NLM controlled vocabulary used to manually index articles for MEDLINE/PubMed. MeSH terms were associated by Entrez Gene ID by three methods, gendoo, gene2pubmed and RBBH. This association is fundamental for enrichment and semantic analyses. meshes supports enrichment analysis (over-representation and gene set enrichment analysis) of gene list or whole expression profile. The semantic comparisons of MeSH terms provide quantitative ways to compute similarities between genes and gene groups. meshes implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively and supports more than 70 species.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Mouse430\_2\_probe\_tab.
The MsQuality provides functionality to calculate quality metrics for mass spectrometry-derived, spectral data at the per-sample level. MsQuality relies on the mzQC framework of quality metrics defined by the Human Proteom Organization-Proteomics Standards Initiative (HUPO-PSI). These metrics quantify the quality of spectral raw files using a controlled vocabulary. The package is especially addressed towards users that acquire mass spectrometry data on a large scale (e.g. data sets from clinical settings consisting of several thousands of samples). The MsQuality package allows to calculate low-level quality metrics that require minimum information on mass spectrometry data: retention time, m/z values, and associated intensities. MsQuality relies on the Spectra package, or alternatively the MsExperiment package, and its infrastructure to store spectral data.
MEIGOR provides a comprehensive environment for performing global optimization tasks in bioinformatics and systems biology. It leverages advanced metaheuristic algorithms to efficiently search the solution space and is specifically tailored to handle the complexity and high-dimensionality of biological datasets. This package supports various optimization routines and is integrated with Bioconductor's infrastructure for a seamless analysis workflow.
Messina is a collection of algorithms for constructing optimally robust single-gene classifiers, and for identifying differential expression in the presence of outliers or unknown sample subgroups. The methods have application in identifying lead features to develop into clinical tests (both diagnostic and prognostic), and in identifying differential expression when a fraction of samples show unusual patterns of expression.
Two-stage measurement error model for correlation estimation with smaller bias than the usual sample correlation.
This package provides several functions to explore miRNA sponge (also called ceRNA or miRNA decoy) regulation from putative miRNA-target interactions or/and transcriptomics data (including bulk, single-cell and spatial gene expression data). It provides eight popular methods for identifying miRNA sponge interactions, and an integrative method to integrate miRNA sponge interactions from different methods, as well as the functions to validate miRNA sponge interactions, and infer miRNA sponge modules, conduct enrichment analysis of miRNA sponge modules, and conduct survival analysis of miRNA sponge modules. By using a sample control variable strategy, it provides a function to infer sample-specific miRNA sponge interactions. In terms of sample-specific miRNA sponge interactions, it implements three similarity methods to construct sample-sample correlation network.
The MicrobiomeBenchmarkData package provides functionality to access microbiome datasets suitable for benchmarking. These datasets have some biological truth, which allows to have expected results for comparison. The datasets come from various published sources and are provided as TreeSummarizedExperiment objects. Currently, only datasets suitable for benchmarking differential abundance methods are available.
Agilent Mouse annotation data (chip mgug4121a) assembled using data from public repositories.