Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for parsing Illumina's microarray output files, including IDAT.
This package provides manifests and annotation for Illumina's 450k array data.
This package is an automatically generated RnBeads annotation package for the assembly hg19.
This package provides tools to analyze and visualize Illumina Infinium methylation arrays.
The scRepertoire package was built to process data derived from the 10x Genomics Chromium Immune Profiling for both TCR and Ig enrichment workflows and subsequently interacts with the popular Seurat and SingleCellExperiment R packages. It also allows for general analysis of single-cell clonotype information without the use of expression information. The package functions as a wrapper for Startrac and powerTCR R packages.
This package contains useful helper functions for dealing with structural variants in VCF format. The packages contains functions for parsing VCFs from a number of popular callers as well as functions for dealing with breakpoints involving two separate genomic loci encoded as GRanges objects.
ATAC-seq, an assay for Transposase-Accessible Chromatin using sequencing, is a rapid and sensitive method for chromatin accessibility analysis. It was developed as an alternative method to MNase-seq, FAIRE-seq and DNAse-seq. The ATACseqQC package was developed to help users to quickly assess whether their ATAC-seq experiment is successful. It includes diagnostic plots of fragment size distribution, proportion of mitochondria reads, nucleosome positioning pattern, and CTCF or other Transcript Factor footprints.
This is a package for detection of differentially bound regions in ChIP-seq data with sliding windows, with methods for normalization and proper FDR control.
Gcrma adjusts for background intensities in Affymetrix array data which include optical noise and non-specific binding (NSB). The main function gcrma converts background adjusted probe intensities to expression measures using the same normalization and summarization methods as a Robust Multiarray Average (RMA). Gcrma uses probe sequence information to estimate probe affinity to NSB. The sequence information is summarized in a more complex way than the simple GC content. Instead, the base types (A, T, G or C) at each position along the probe determine the affinity of each probe. The parameters of the position-specific base contributions to the probe affinity is estimated in an NSB experiment in which only NSB but no gene-specific binding is expected.
R-dsb improves protein expression analysis in droplet-based single-cell studies. The package specifically addresses noise in raw protein UMI counts from methods like CITE-seq. It identifies and removes two main sources of noise—protein-specific noise from unbound antibodies and droplet/cell-specific noise. The package is applicable to various methods, including CITE-seq, REAP-seq, ASAP-seq, TEA-seq, and Mission Bioplatform data. Check the vignette for tutorials on integrating dsb with Seurat and Bioconductor, and using dsb in Python.
This package ofers functions for importation, normalization, visualization, and quality control to correct identified sources of variability in array of CGH experiments.
Filter genetic variants using different criteria such as inheritance model, amino acid change consequence, minor allele frequencies across human populations, splice site strength, conservation, etc.
This package provides Bayesian shrinkage estimators for effect sizes for a variety of GLM models, using approximation of the posterior for individual coefficients.
CopywriteR extracts DNA copy number information from targeted sequencing by utilizing off-target reads. It allows for extracting uniformly distributed copy number information, can be used without reference, and can be applied to sequencing data obtained from various techniques including chromatin immunoprecipitation and target enrichment on small gene panels. Thereby, CopywriteR constitutes a widely applicable alternative to available copy number detection tools.
This package implements infrastructures for ontology analysis by offering efficient data structures, fast ontology traversal methods, and elegant visualizations. It provides a robust toolbox supporting over 70 methods for semantic similarity analysis.
The data consist of microarrays from 128 different individuals with acute lymphoblastic leukemia (ALL). A number of additional covariates are available. The data have been normalized (using rma) and it is the jointly normalized data that are available here. The data are presented in the form of an exprSet object.
This package is an R package dedicated to the analysis of (multiplexed) 4C sequencing data. r-fourcseq provides a pipeline to detect specific interactions between DNA elements and identify differential interactions between conditions. The statistical analysis in R starts with individual bam files for each sample as inputs. To obtain these files, the package contains a Python script to demultiplex libraries and trim off primer sequences. With a standard alignment software the required bam files can be then be generated.
The lumi package provides an integrated solution for the Illumina microarray data analysis. It includes functions of Illumina BeadStudio (GenomeStudio) data input, quality control, BeadArray-specific variance stabilization, normalization and gene annotation at the probe level. It also includes the functions of processing Illumina methylation microarrays, especially Illumina Infinium methylation microarrays.
The AffiXcan package imputes a genetically regulated expression (GReX) for a set of genes in a sample of individuals, using a method based on the total binding affinity (TBA). Statistical models to impute GReX can be trained with a training dataset where the real total expression values are known.
This is a package for saving matrices, arrays and similar objects into file artifacts, and loading them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties.
TreeSummarizedExperiment extends SingleCellExperiment to include hierarchical information on the rows or columns of the rectangular data.
This package installs a self-contained Conda instance that is managed by the R/Bioconductor installation machinery. This aims to provide a consistent Python environment that can be used reliably by Bioconductor packages. Functions are also provided to enable smooth interoperability of multiple Python environments in a single R session.
This package implements tools for delayed computation of a matrix of residuals after fitting a linear model to each column of an input matrix. It also supports partial computation of residuals where selected factors are to be preserved in the output matrix. It implements a number of efficient methods for operating on the delayed matrix of residuals, most notably matrix multiplication and calculation of row/column sums or means.
Monocle 3 performs clustering, differential expression and trajectory analysis for single-cell expression experiments. It orders individual cells according to progress through a biological process, without knowing ahead of time which genes define progress through that process. Monocle 3 also performs differential expression analysis, clustering, visualization, and other useful tasks on single-cell expression data. It is designed to work with RNA-Seq data, but could be used with other types as well.