Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements cross-validation methods for linear and ridge regression models. The package provides grid-based selection of the ridge penalty parameter using Singular Value Decomposition (SVD) and supports K-fold cross-validation, Leave-One-Out Cross-Validation (LOOCV), and Generalized Cross-Validation (GCV). Computations are implemented in C++ via RcppArmadillo with optional parallelization using RcppParallel'. The methods are suitable for high-dimensional settings where the number of predictors exceeds the number of observations.
It provides functions to bootstrap Credit Curves from market quotes (Credit Default Swap - CDS - spreads) and price Credit Default Swaps - CDS.
Create self-contained SVG information cards with embedded Google Fonts', shields-style badges, and custom logos. Cards are fully portable SVG files ideal for dashboards, reports, and web applications. Includes functions to export cards to PNG format and display them in R Markdown and Quarto documents.
This package provides R utilities to build unlevered and levered discounted cash flow (DCF) tables for commercial real estate (CRE) assets. Functions generate bullet and amortising debt schedules, compute credit metrics such as debt coverage ratios (DCR), debt service coverage ratios (DSCR), interest coverage ratios, debt yield ratios, and forward loan-to-value ratios (LTV) based on net operating income (NOI). The toolkit evaluates refinancing feasibility under alternative market scenarios and supports end-to-end scenario execution from a YAML (YAML Ain't Markup Language) configuration file parsed with yaml'. Includes helpers for sensitivity analysis, covenant diagnostics, and reproducible vignettes.
Fit composite Gaussian process (CGP) models as described in Ba and Joseph (2012) "Composite Gaussian Process Models for Emulating Expensive Functions", Annals of Applied Statistics. The CGP model is capable of approximating complex surfaces that are not second-order stationary. Important functions in this package are CGP, print.CGP, summary.CGP, predict.CGP and plotCGP.
This package implements parametric (Direct) regression methods for modeling cumulative incidence functions (CIFs) in the presence of competing risks. Methods include the direct Gompertz-based approach and generalized regression models as described in Jeong and Fine (2006) <doi:10.1111/j.1467-9876.2006.00532.x> and Jeong and Fine (2007) <doi:10.1093/biostatistics/kxj040>. The package facilitates maximum likelihood estimation, variance computation, with applications to clinical trials and survival analysis.
Estimation of sparse nonlinear functions in nonparametric regression using component selection and smoothing. Designed for the analysis of high-dimensional data, the models support various data types, including exponential family models and Cox proportional hazards models. The methodology is based on Lin and Zhang (2006) <doi:10.1214/009053606000000722>.
Includes climate data from Japan Meteorological Agency ('JMA') <https://www.jma.go.jp/jma/indexe.html>. Can download climate data from JMA'.
Copula-based regression models for multivariate censored data, including bivariate right-censored data, bivariate interval-censored data, and right/interval-censored semi-competing risks data. Currently supports Clayton, Gumbel, Frank, Joe, AMH and Copula2 copula models. For marginal models, it supports parametric (Weibull, Loglogistic, Gompertz) and semiparametric (Cox and transformation) models. Includes methods for convenient prediction and plotting. Also provides a bivariate time-to-event simulation function and an information ratio-based goodness-of-fit test for copula. Method details can be found in Sun et.al (2019) Lifetime Data Analysis, Sun et.al (2021) Biostatistics, Sun et.al (2022) Statistical Methods in Medical Research, Sun et.al (2022) Biometrics, and Sun et al. (2023+) JRSSC.
Calculates predictions from generalized estimating equations and internally cross-validates them using the logarithmic, quadratic and spherical proper scoring rules; Kung-Yee Liang and Scott L. Zeger (1986) <doi:10.1093/biomet/73.1.13>.
This package provides tools for measuring the compositionality of signalling systems (in particular the information-theoretic measure due to Spike (2016) <http://hdl.handle.net/1842/25930> and the Mantel test for distance matrix correlation (after Dietz 1983) <doi:10.1093/sysbio/32.1.21>), functions for computing string and meaning distance matrices as well as an implementation of the Page test for monotonicity of ranks (Page 1963) <doi:10.1080/01621459.1963.10500843> with exact p-values up to k = 22.
This package provides several functions to identify and analyse miRNA sponge, including popular methods for identifying miRNA sponge interactions, two types of global ceRNA regulation prediction methods and four types of context-specific prediction methods( Li Y et al.(2017) <doi:10.1093/bib/bbx137>), which are based on miRNA-messenger RNA regulation alone, or by integrating heterogeneous data, respectively. In addition, For predictive ceRNA relationship pairs, this package provides several downstream analysis algorithms, including regulatory network analysis and functional annotation analysis, as well as survival prognosis analysis based on expression of ceRNA ternary pair.
This package contains functions which can be used to calculate Pesticide Risk Metric values in aquatic environments from concentrations of multiple pesticides with known species sensitive distributions (SSDs). Pesticides provided by this package have all be validated however if the user has their own pesticides with SSD values they can append them to the pesticide_info table to include them in estimates.
Evaluation for density and distribution function of convolution of gamma distributions in R. Two related exact methods and one approximate method are implemented with efficient algorithm and C++ code. A quick guide for choosing correct method and usage of this package is given in package vignette. For the detail of methods used in this package, we refer the user to Mathai(1982)<doi:10.1007/BF02481056>, Moschopoulos(1984)<doi:10.1007/BF02481123>, Barnabani(2017)<doi:10.1080/03610918.2014.963612>, Hu et al.(2020)<doi:10.1007/s00180-019-00924-9>.
This package provides the official administrative boundaries of the Azores (Região Autónoma dos Açores (RAA)) as defined in the 2024 edition of the Carta Administrativa Oficial de Portugal (CAOP), published by the Direção-Geral do Território (DGT). The package includes convenience functions to import these boundaries as sf objects for spatial analysis in R. Source: <https://geo2.dgterritorio.gov.pt/caop/CAOP_RAA_2024-gpkg.zip>.
Code for a variety of nonlinear conditional independence tests: Kernel conditional independence test (Zhang et al., UAI 2011, <arXiv:1202.3775>), Residual Prediction test (based on Shah and Buehlmann, <arXiv:1511.03334>), Invariant environment prediction, Invariant target prediction, Invariant residual distribution test, Invariant conditional quantile prediction (all from Heinze-Deml et al., <arXiv:1706.08576>).
It computes full conformal, split conformal and multi-split conformal prediction regions when the response variable is multivariate (i.e. dimension is greater than one). Moreover, the package also contains plot functions to visualize the output of the full and split conformal functions. To guarantee consistency, the package structure mimics the univariate package conformalInference by Ryan Tibshirani. See Lei, Gâ sell, Rinaldo, Tibshirani, & Wasserman (2018) <doi:10.1080/01621459.2017.1307116> for full and split conformal prediction in regression, and Barber, Candès, Ramdas, & Tibshirani (2023) <doi:10.1214/23-AOS2276> for extensions beyond exchangeability.
This package implements the count splitting methodology from Neufeld et al. (2022) <doi:10.1093/biostatistics/kxac047> and Neufeld et al. (2023) <arXiv:2307.12985>. Intended for turning a matrix of single-cell RNA sequencing counts, or similar count datasets, into independent folds that can be used for training/testing or cross validation. Assumes that the entries in the matrix are from a Poisson or a negative binomial distribution.
Support for import from and export to the CSVY file format. CSVY is a file format that combines the simplicity of CSV (comma-separated values) with the metadata of other plain text and binary formats (JSON, XML, Stata, etc.) by placing a YAML header on top of a regular CSV.
Maps of Comoro Islands. Layers include the country coastline, each island coastline and administrative regions boundaries.
P-values and no/lowest observed (adverse) effect concentration values derived from the closure principle computational approach test (Lehmann, R. et al. (2015) <doi:10.1007/s00477-015-1079-4>) are provided. The package contains functions to generate intersection hypotheses according to the closure principle (Bretz, F., Hothorn, T., Westfall, P. (2010) <doi:10.1201/9781420010909>), an implementation of the computational approach test (Ching-Hui, C., Nabendu, P., Jyh-Jiuan, L. (2010) <doi:10.1080/03610918.2010.508860>) and the combination of both, that is, the closure principle computational approach test.
Non-parametric test for equality of multivariate distributions. Trains a classifier to classify (multivariate) observations as coming from one of several distributions. If the classifier is able to classify the observations better than would be expected by chance (using permutation inference), then the null hypothesis that the distributions are equal is rejected.
Simple interpolation methods designed to be used from C code. Supports constant, linear and spline interpolation. An R wrapper is included but this package is primarily designed to be used from C code using LinkingTo'. The spline calculations are classical cubic interpolation, e.g., Forsythe, Malcolm and Moler (1977) <ISBN: 9780131653320>.
Provided R functions for working with the Conditional Negative Binomial distribution.