Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculates the pooled mean group (PMG) estimator for dynamic panel data models, as described by Pesaran, Shin and Smith (1999) <doi:10.1080/01621459.1999.10474156>.
An interface to the API for Pan-STARRS1', a data archive of the PS1 wide-field astronomical survey. The package allows access to the PS1 catalog and to the PS1 images. (see <https://outerspace.stsci.edu/display/PANSTARRS/> for more information). You can use it to plan astronomical observations, make guidance pictures, find magnitudes in five broadband filters (g, r, i, z, y) and more.
Numerical integration of continuously differentiable functions f(x,y) over simple closed polygonal domains. The following cubature methods are implemented: product Gauss cubature (Sommariva and Vianello, 2007, <doi:10.1007/s10543-007-0131-2>), the simple two-dimensional midpoint rule (wrapping spatstat.geom functions), and adaptive cubature for radially symmetric functions via line integrate() along the polygon boundary (Meyer and Held, 2014, <doi:10.1214/14-AOAS743>, Supplement B). For simple integration along the axes, the cubature package is more appropriate.
The Penn World Table 10.x (<https://www.rug.nl/ggdc/productivity/pwt/>) provides information on relative levels of income, output, input, and productivity for 183 countries between 1950 and 2019.
Given k populations (can be in thousands), what is the probability that a given subset of size t contains the true top t populations? This package finds this probability and offers three tuning parameters (G, d, L) to relax the definition.
Computes the minimum sample size required for the development of a new multivariable prediction model using the criteria proposed by Riley et al. (2018) <doi: 10.1002/sim.7992>. pmsampsize can be used to calculate the minimum sample size for the development of models with continuous, binary or survival (time-to-event) outcomes. Riley et al. (2018) <doi: 10.1002/sim.7992> lay out a series of criteria the sample size should meet. These aim to minimise the overfitting and to ensure precise estimation of key parameters in the prediction model.
Fit a probabilistic index model as described in Thas et al, 2012: <doi:10.1111/j.1467-9868.2011.01020.x>. The interface to the modeling function has changed in this new version. The old version is still available at R-Forge.
In the situation when multiple alternative treatments or interventions available, different population groups may respond differently to different treatments. This package implements a method that discovers the population subgroups in which a certain treatment has a better effect than the other alternative treatments. This is done by first estimating the treatment effect for a given treatment and its uncertainty by computing random forests, and the resulting model is summarized by a decision tree in which the probabilities that the given treatment is best for a given subgroup is shown in the corresponding terminal node of the tree.
This package provides functionality for Bayesian analysis of replication studies using power prior approaches (Pawel et al., 2023) <doi:10.1007/s11749-023-00888-5>.
Package for learning and evaluating (subgroup) policies via doubly robust loss functions. Policy learning methods include doubly robust blip/conditional average treatment effect learning and sequential policy tree learning. Methods for (subgroup) policy evaluation include doubly robust cross-fitting and online estimation/sequential validation. See Nordland and Holst (2022) <doi:10.48550/arXiv.2212.02335> for documentation and references.
Creates, fits and samples Pair-Copula Bayesian networks (PCBN) under some restrictions on the underlying Directed Acyclic Graph (DAG), that is, no active cycles nor interfering v-structures, following Derumigny, Horsman and Kurowicka (2025) <doi:10.48550/arXiv.2510.03518>.
Calculates seat allocation using the D-Hondt method, Sainte-Lague method, and Modified Sainte-Lague method, all commonly used in proportional representation electoral systems. For more information on these methods, see Michael Gallagher (1991)<doi:10.1016/0261-3794(91)90004-C>.
Prediction limits for the Poisson distribution are produced from both frequentist and Bayesian viewpoints. Limiting results are provided in a Bayesian setting with uniform, Jeffreys and gamma as prior distributions. More details on the methodology are discussed in Bejleri and Nandram (2018) <doi:10.1080/03610926.2017.1373814> and Bejleri, Sartore and Nandram (2021) <doi:10.1007/s42952-021-00157-x>.
Estimation and inference of spatial and spatio-temporal semiparametric models including spatial or spatio-temporal non-parametric trends, parametric and non-parametric covariates and, possibly, a spatial lag for the dependent variable and temporal correlation in the noise. The spatio-temporal trend can be decomposed in ANOVA way including main and interaction functional terms. Use of SAP algorithm to estimate the spatial or spatio-temporal trend and non-parametric covariates. The methodology of these models can be found in next references Basile, R. et al. (2014), <doi:10.1016/j.jedc.2014.06.011>; Rodriguez-Alvarez, M.X. et al. (2015) <doi:10.1007/s11222-014-9464-2> and, particularly referred to the focus of the package, Minguez, R., Basile, R. and Durban, M. (2020) <doi:10.1007/s10260-019-00492-8>.
You can use this program for 3 sets of categorical data for propensity score matching. Assume that the data has 3 different categorical variables. You can use it to perform propensity matching of baseline indicator groupings. The matching will make the differences in the baseline data smaller. This method was described by Alvaro Fuentes (2022) <doi:10.1080/00273171.2021.1925521>.
R API for Pathling', a tool for querying and transforming electronic health record data that is represented using the Fast Healthcare Interoperability Resources (FHIR) standard - see <https://pathling.csiro.au/docs>.
This package implements principal component analysis, orthogonal rotation and multiple factor analysis for a mixture of quantitative and qualitative variables.
Generates Weibull-parameterized estimates of phenology for any percentile of a distribution using the framework established in Cooke (1979) <doi:10.1093/biomet/66.2.367>. Extensive testing against other estimators suggest the weib_percentile() function is especially useful in generating more accurate and less biased estimates of onset and offset (Belitz et al. 2020) <doi:10.1111/2041-210X.13448>. Non-parametric bootstrapping can be used to generate confidence intervals around those estimates, although this is computationally expensive. Additionally, this package offers an easy way to perform non-parametric bootstrapping to generate confidence intervals for quantile estimates, mean estimates, or any statistical function of interest.
Reviews other packages during code review by looking at their dependencies, code style, code complexity, and how internally defined functions interact with one another.
This package provides a collection of miscellaneous functions for passive acoustics. Much of the content here is adapted to R from code written by other people. If you have any ideas of functions to add, please contact Taiki Sakai.
This package provides a collection of functions that primarily produce graphics to aid in a Propensity Score Analysis (PSA). Functions include: cat.psa and box.psa to test balance within strata of categorical and quantitative covariates, circ.psa for a representation of the estimated effect size by stratum, loess.psa that provides a graphic and loess based effect size estimate, and various balance functions that provide measures of the balance achieved via a PSA in a categorical covariate.
This package provides software to facilitate the design, testing, and operation of computer models. It focuses particularly on tools that make it easy to construct and edit a customized graphical user interface ('GUI'). Although our simplified GUI language depends heavily on the R interface to the Tcl/Tk package, a user does not need to know Tcl/Tk'. Examples illustrate models built with other R packages, including PBSmapping', PBSddesolve', and BRugs'. A complete user's guide PBSmodelling-UG.pdf shows how to use this package effectively.
This package infers the trends of one or several animal populations over time from series of counts. It does so by accounting for count precision (provided or inferred based on expert knowledge, e.g. guesstimates), smoothing the population rate of increase over time, and accounting for the maximum demographic potential of species. Inference is carried out in a Bayesian framework. This work is part of the FRB-CESAB working group AfroBioDrivers <https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/afrobiodrivers/>.
Descriptive statistics (mean rank, pairwise frequencies, and marginal matrix), Analytic Hierarchy Process models (with Saaty's and Koczkodaj's inconsistencies), probability models (Luce models, distance-based models, and rank-ordered logit models) and visualization with multidimensional preference analysis for ranking data are provided. Current, only complete rankings are supported by this package.