Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for the identification of differentially expressed genes and estimation of the False Discovery Rate (FDR) using both the Significance Analysis of Microarrays (SAM) and the Empirical Bayes Analyses of Microarrays (EBAM).
This package provides per-exon and per-gene read counts computed for selected genes from RNA-seq data that were presented in the article 'Conservation of an RNA regulatory map between Drosophila and mammals' by Brooks et al., Genome Research 2011.
This package provides genome wide annotations for Bovine, primarily based on mapping using Entrez Gene identifiers.
This package provides supporting annotation and test data for SeSAMe package. This includes chip tango addresses, mapping information, performance annotation, and trained predictor for Infinium array data. This package provides user access to essential annotation data for working with many generations of the Infinium DNA methylation array. It currently supports human array (HM27, HM450, EPIC), mouse array (MM285) and the HorvathMethylChip40 (Mammal40) array.
RcisTarget identifies transcription factor binding motifs (TFBS) over-represented on a gene list. In a first step, RcisTarget selects DNA motifs that are significantly over-represented in the surroundings of the transcription start site (TSS) of the genes in the gene-set. This is achieved by using a database that contains genome-wide cross-species rankings for each motif. The motifs that are then annotated to TFs and those that have a high Normalized Enrichment Score (NES) are retained. Finally, for each motif and gene-set, RcisTarget predicts the candidate target genes (i.e. genes in the gene-set that are ranked above the leading edge).
This package provides a one-to-one mapping from gene to "best" probe set for four Affymetrix human gene expression microarrays: hgu95av2, hgu133a, hgu133plus2, and u133x3p. On Affymetrix gene expression microarrays, a single gene may be measured by multiple probe sets. This can present a mild conundrum when attempting to evaluate a gene "signature" that is defined by gene names rather than by specific probe sets. This package also includes the pre-calculated probe set quality scores that were used to define the mapping.
BioNERO aims to integrate all aspects of biological network inference in a single package, including data preprocessing, exploratory analyses, network inference, and analyses for biological interpretations. BioNERO can be used to infer gene coexpression networks (GCNs) and gene regulatory networks (GRNs) from gene expression data. Additionally, it can be used to explore topological properties of protein-protein interaction (PPI) networks. GCN inference relies on the popular WGCNA algorithm. GRN inference is based on the "wisdom of the crowds" principle, which consists in inferring GRNs with multiple algorithms (here, CLR, GENIE3 and ARACNE) and calculating the average rank for each interaction pair. As all steps of network analyses are included in this package, BioNERO makes users avoid having to learn the syntaxes of several packages and how to communicate between them. Finally, users can also identify consensus modules across independent expression sets and calculate intra and interspecies module preservation statistics between different networks.
The package is able to read bead-level data (raw TIFFs and text files) output by BeadScan as well as bead-summary data from BeadStudio. Methods for quality assessment and low-level analysis are provided.
This package provides a parser for mzIdentML files implemented using the XML package. The parser tries to be general and able to handle all types of mzIdentML files with the drawback of having less pretty output than a vendor specific parser.
MDQC is a multivariate quality assessment method for microarrays based on quality control (QC) reports. The Mahalanobis distance of an array's quality attributes is used to measure the similarity of the quality of that array against the quality of the other arrays. Then, arrays with unusually high distances can be flagged as potentially low-quality.
This package provides mappings from Entrez gene identifiers to various annotations for the genome of the model fruit fly Drosophila melanogaster.
This package was derived from Rsymphony. The package provides an R interface to SYMPHONY, a linear programming solver written in C++. The main difference between this package and Rsymphony is that it includes the solver source code, while Rsymphony expects to find header and library files on the users' system. Thus the intention of lpsymphony is to provide an easy to install interface to SYMPHONY.
This package provides a collection of tools for analyzing and visualizing bisulfite sequencing data.
This package provides the core data structure and API to represent and interact with gated cytometry data.
EBImage provides general purpose functionality for image processing and analysis. In the context of (high-throughput) microscopy-based cellular assays, EBImage offers tools to segment cells and extract quantitative cellular descriptors. This allows the automation of such tasks using the R programming language and facilitates the use of other tools in the R environment for signal processing, statistical modeling, machine learning and visualization with image data.
MetagenomeSeq is designed to determine features (be it OTU, species, etc.) that are differentially abundant between two or more groups of multiple samples. This package is designed to address the effects of both normalization and under-sampling of microbial communities on disease association detection and the testing of feature correlations.
This package contains the Mus.musculus object to access data from several related annotation packages.
This package defines an S4 class for storing data from spatial -omics experiments. The class extends SingleCellExperiment to support storage and retrieval of additional information from spot-based and molecule-based platforms, including spatial coordinates, images, and image metadata. A specialized constructor function is included for data from the 10x Genomics Visium platform.
This package contains tools to support the construction of tcltk widgets in R.
iClusterPlus is developed for integrative clustering analysis of multi-type genomic data and is an enhanced version of iCluster proposed and developed by Shen, Olshen and Ladanyi (2009). Multi-type genomic data arise from the experiments where biological samples (e.g. tumor samples) are analyzed by multiple techniques, for instance, array comparative genomic hybridization (aCGH), gene expression microarray, RNA-seq and DNA-seq, and so on. In the iClusterPlus model, binary observations such as somatic mutation are modeled as Binomial processes; categorical observations such as copy number states are realizations of Multinomial random variables; counts are modeled as Poisson random processes; and continuous measures are modeled by Gaussian distributions.
This package contains microarray gene expression data on 57 bladder samples from 5 batches. The data are used as an illustrative example for the sva package.
Graphite provides networks derived from eight public pathway databases, and automates the conversion of node identifiers (e.g. from Entrez IDs to gene symbols).
The main function in the h5mread package is h5mread(), which allows reading arbitrary data from an HDF5 dataset into R, similarly to what the h5read() function from the rhdf5 package does. In the case of h5mread(), the implementation has been optimized to make it as fast and memory-efficient as possible.
The package ABarray is designed to work with Applied Biosystems whole genome microarray platform, as well as any other platform whose data can be transformed into expression data matrix. Functions include data preprocessing, filtering, control probe analysis, statistical analysis in one single function. A graphical user interface (GUI) is also provided. The raw data, processed data, graphics output and statistical results are organized into folders according to the analysis settings used.