Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for estimating tolerance limits (intervals) for various univariate distributions (binomial, Cauchy, discrete Pareto, exponential, two-parameter exponential, extreme value, hypergeometric, Laplace, logistic, negative binomial, negative hypergeometric, normal, Pareto, Poisson-Lindley, Poisson, uniform, and Zipf-Mandelbrot), Bayesian normal tolerance limits, multivariate normal tolerance regions, nonparametric tolerance intervals, tolerance bands for regression settings (linear regression, nonlinear regression, nonparametric regression, and multivariate regression), and analysis of variance tolerance intervals. Visualizations are also available for most of these settings.
This package computes the areas under the precision-recall (PR) and ROC curve for weighted (e.g. soft-labeled) and unweighted data. In contrast to other implementations, the interpolation between points of the PR curve is done by a non-linear piecewise function. In addition to the areas under the curves, the curves themselves can also be computed and plotted by a specific S3-method.
This package provides system native access to the font catalogue. As font handling varies between systems it is difficult to correctly locate installed fonts across different operating systems. The 'systemfonts' package provides bindings to the native libraries for finding font files that can then be used further by e.g. graphic devices.
This package fits multivariate generalized linear mixed models and related models. This is done using Markov chain Monte Carlo techniques.
This package implements an efficient O(n) algorithm based on bucket-sorting for fast computation of standard clustering comparison measures. Available measures include adjusted Rand index (ARI), normalized information distance (NID), normalized mutual information (NMI), adjusted mutual information (AMI), normalized variation information (NVI) and entropy.
This package provides tools to combine multidimensional arrays into a single array. This is a generalization of cbind and rbind. It works with vectors, matrices, and higher-dimensional arrays. It also provides the functions adrop, asub, and afill for manipulating, extracting and replacing data in arrays.
LIGER is a package for integrating and analyzing multiple single-cell datasets, developed and maintained by the Macosko lab. It relies on integrative non-negative matrix factorization to identify shared and dataset-specific factors.
Maximum likelihood computations for Tweedie families, including the series expansion (Dunn and Smyth, 2005; <doi10.1007/s11222-005-4070-y>) and the Fourier inversion (Dunn and Smyth, 2008; <doi:10.1007/s11222-007-9039-6>), and related methods.
This package performs 2D Delaunay triangulation, constrained or unconstrained, with the help of the C++ library CDT. A function to plot the triangulation is provided. The constrained Delaunay triangulation has applications in geographic information systems.
This package provides a simple and light-weight API for memory profiling of R expressions. The profiling is built on top of R's built-in memory profiler utils::Rprofmem(), which records every memory allocation done by R (also native code).
This package provides a normalization method for single-cell UMI count data using a variance stabilizing transformation. The transformation is based on a negative binomial regression model with regularized parameters. As part of the same regression framework, this package also provides functions for batch correction, and data correction.
Finding an optimal Bayesian experimental design involves maximizing an objective function given by the expectation of some appropriately chosen utility function with respect to the joint distribution of unknown quantities (including responses). This objective function is usually not available in closed form and the design space can be continuous and of high dimensionality. This package uses Approximate Coordinate Exchange (ACE) to maximise an approximation to the expectation of the utility function.
This package provides a light weight implementation of the standard distribution functions for the inverse gamma distribution, wrapping those for the gamma distribution in the stats package.
This package provides classes and methods for spatial objects that have a registered time column, in particular for irregular spatiotemporal data. The time column can be of any type, but needs to be ordinal. Regularly laid out spatiotemporal data (vector or raster data cubes) are handled by package stars'.
Extracts plain text from Rich Text Format (RTF) file.
This package provides functions for prior and likelihood sensitivity analysis in Bayesian models. It implements methods to determine the sensitivity of the posterior to power-scaling perturbations of the prior and likelihood.
This package contains an implementation of a function digest() for the creation of hash digests of arbitrary R objects (using the md5, sha-1, sha-256, crc32, xxhash and murmurhash algorithms) permitting easy comparison of R language objects, as well as a function hmac() to create hash-based message authentication code.
Please note that this package is not meant to be deployed for cryptographic purposes for which more comprehensive (and widely tested) libraries such as OpenSSL should be used.
This tool provides an algorithm to identify rare cell types in single-cell data. It also identifies abundant cell types. The method is based on transcript counts obtained with unique molecular identifies.
This package provides various R programming tools for plotting data, including:
calculating and plotting locally smoothed summary function
enhanced versions of standard plots
manipulating colors
calculating and plotting two-dimensional data summaries
enhanced regression diagnostic plots
formula-enabled interface to
stats::lowessfunctiondisplaying textual data in plots
balloon plots
plotting "Venn" diagrams
displaying Open-Office style plots
plotting multiple data on same region, with separate axes
plotting means and confidence intervals
spacing points in an x-y plot so they don't overlap
Tools for working with and comparing sets of points and intervals.
This package provides probability mass, distribution, quantile, random-variate generation, and method-of-moments parameter-estimation functions for the Delaporte distribution with parameterization based on Vose (2008). The Delaporte is a discrete probability distribution which can be considered the convolution of a negative binomial distribution with a Poisson distribution. Alternatively, it can be considered a counting distribution with both Poisson and negative binomial components. It has been studied in actuarial science as a frequency distribution which has more variability than the Poisson, but less than the negative binomial.
Functions and examples are provided for transmission/disequilibrium tests for extended marker haplotypes, as in Clayton, D. and Jones, H. (1999) "Transmission/disequilibrium tests for extended marker haplotypes".
This package lets you standardize country names, convert them into one of 40 different coding schemes, convert between coding schemes, and assign region descriptors.
This package provides procedures to answer the following questions: How much ram do you need to store a 100,000 by 100,000 matrix? How much ram is your current R session using? How much ram do you even have?