Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is a C/C++ based package for advanced data transformation and statistical computing in R that is extremely fast, class-agnostic, robust and programmer friendly. Core functionality includes a rich set of S3 generic grouped and weighted statistical functions for vectors, matrices and data frames, which provide efficient low-level vectorizations, OpenMP multithreading, and skip missing values by default. These are integrated with fast grouping and ordering algorithms (also callable from C), and efficient data manipulation functions. The package also provides a flexible and rigorous approach to time series and panel data in R. It further includes fast functions for common statistical procedures, detailed (grouped, weighted) summary statistics, powerful tools to work with nested data, fast data object conversions, functions for memory efficient R programming, and helpers to effectively deal with variable labels, attributes, and missing data.
This package provides a set of predicates and assertions for checking the types of variables. This is mainly for use by other package developers who want to include run-time testing features in their own packages.
This package provides a fast and improved implementation of the graphical LASSO.
This package is a compatibility wrapper to replace the orphaned package by Romain Francois. New applications should use the openssl or base64enc package instead.
This is a package for graphical and statistical analyses of environmental data, with a focus on analyzing chemical concentrations and physical parameters, usually in the context of mandated environmental monitoring. It provides major environmental statistical methods found in the literature and regulatory guidance documents, with extensive help that explains what these methods do, how to use them, and where to find them in the literature. It comes with numerous built-in data sets from regulatory guidance documents and environmental statistics literature. It includes scripts reproducing analyses presented in the book "EnvStats: An R Package for Environmental Statistics" (Millard, 2013, Springer, ISBN 978-1-4614-8455-4, https://link.springer.com/book/10.1007/978-1-4614-8456-1).
int64 values can be created and accessed via the bit64 package and its integer64 class which package the int64 representation cleverly into a double. The nanotime package builds on this to support nanosecond-resolution timestamps. This package helps conversions between R and C++ via several helper functions provided via a single header file. A complete example client package is included as an illustration.
This package provides tools for functional enrichment analysis, gene identifier conversion and mapping homologous genes across related organisms via the g:Profiler toolkit.
svglite is a graphics device that produces clean SVG (Scalable Vector Graphics) output, suitable for use on the web, or hand editing. Compared to the built-in svg(), svglite is considerably faster, produces smaller files, and leaves text as is.
ACDm is a package for Autoregressive Conditional Duration (ACD, Engle and Russell, 1998) models. It creates trade, price or volume durations from transactions (tic) data, performs diurnal adjustments, fits various ACD models and tests them.
This is a package for curve, surface and function fitting with an emphasis on splines, spatial data and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets.
The ability to tune models is important. tune contains functions and classes to be used in conjunction with other tidymodels packages for finding reasonable values of hyper-parameters in models, pre-processing methods, and post-processing steps.
Format dates and times flexibly and to whichever locales make sense. This package parses dates, times, and date-times in various formats (including string-based ISO 8601 constructions). The formatting syntax gives the user many options for formatting the date and time output in a precise manner. Time zones in the input can be expressed in multiple ways and there are many options for formatting time zones in the output as well. Several of the provided helper functions allow for automatic generation of locale-aware formatting patterns based on date/time skeleton formats and standardized date/time formats with varying specificity.
This package provides probability mass, distribution, quantile, random-variate generation, and method-of-moments parameter-estimation functions for the Delaporte distribution with parameterization based on Vose (2008). The Delaporte is a discrete probability distribution which can be considered the convolution of a negative binomial distribution with a Poisson distribution. Alternatively, it can be considered a counting distribution with both Poisson and negative binomial components. It has been studied in actuarial science as a frequency distribution which has more variability than the Poisson, but less than the negative binomial.
This package provides extensions to ggplot2, respecting the grammar of its graphics paradigm.
This package provides a collection of artificial and real-world machine learning benchmark problems, including, e.g., several data sets from the UCI repository.
This package provides an interface to Amazon Web Services management and governance services, including CloudWatch application and infrastructure monitoring, Auto Scaling for automatically scaling resources, and more.
This package provides tools to estimate tail area-based false discovery rates as well as local false discovery rates for a variety of null models (p-values, z-scores, correlation coefficients, t-scores). The proportion of null values and the parameters of the null distribution are adaptively estimated from the data. In addition, the package contains functions for non-parametric density estimation (Grenander estimator), for monotone regression (isotonic regression and antitonic regression with weights), for computing the greatest convex minorant (GCM) and the least concave majorant (LCM), for the half-normal and correlation distributions, and for computing empirical higher criticism (HC) scores and the corresponding decision threshold.
This package provides an R based genetic algorithm for binary and floating point chromosomes.
This package provides data sets and scripts to accompany Time Series Analysis and Its Applications: With R Examples (4th ed), by R.H. Shumway and D.S. Stoffer. Springer Texts in Statistics, 2017, https://doi.org/10.1007/978-3-319-52452-8, and Time Series: A Data Analysis Approach Using R. Chapman-Hall, 2019, https://doi.org/10.1201/9780429273285.
This package provides support for linear order and unimodal order (univariate) isotonic regression and bivariate isotonic regression with linear order on both variables.
This package provides tool for estimation, testing and regression modeling of subdistribution functions in competing risks, as described in Gray (1988), A class of K-sample tests for comparing the cumulative incidence of a competing risk, Ann. Stat. 16:1141-1154, and Fine JP and Gray RJ (1999), A proportional hazards model for the subdistribution of a competing risk, JASA, 94:496-509.
This package provides a collection of HTML, JavaScript, and CSS assets that dynamically generate beautiful documentation from a Swagger compliant API.
This package provides an interface to Amazon Web Services cost management services, including cost and usage reports, budgets, pricing, and more.
This package provides functions for plotting graphical shapes such as ellipses, circles, cylinders, arrows, ...