Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The model estimates air pollution removal by dry deposition on trees. It also estimates or uses hourly values for aerodynamic resistance, boundary layer resistance, canopy resistance, stomatal resistance, cuticular resistance, mesophyll resistance, soil resistance, friction velocity and deposition velocity. It also allows plotting graphical results for a specific time period. The pollutants are nitrogen dioxide, ozone, sulphur dioxide, carbon monoxide and particulate matter. Baldocchi D (1994) <doi:10.1093/treephys/14.7-8-9.1069>. Farquhar GD, von Caemmerer S, Berry JA (1980) Planta 149: 78-90. Hirabayashi S, Kroll CN, Nowak DJ (2015) i-Tree Eco Dry Deposition Model. Nowak DJ, Crane DE, Stevens JC (2006) <doi:10.1016/j.ufug.2006.01.007>. US EPA (1999) PCRAMMET User's Guide. EPA-454/B-96-001. Weiss A, Norman JM (1985) Agricultural and Forest Meteorology 34: 205â 213.
The ta-test is a modified two-sample or two-group t-test of Gosset (1908). In small samples with less than 15 replicates,the ta-test significantly reduces type I error rate but has almost the same power with the t-test and hence can greatly enhance reliability or reproducibility of discoveries in biology and medicine. The ta-test can test single null hypothesis or multiple null hypotheses without needing to correct p-values.
We focus on the diagnostic ability assessment of medical tests when the outcome of interest is the status (alive or dead) of the subjects at a certain time-point t. This binary status is determined by right-censored times to event and it is unknown for those subjects censored before t. Here we provide three methods (unknown status exclusion, imputation of censored times and using time-dependent ROC curves) to evaluate the diagnostic ability of binary and continuous tests in this context. Two references for the methods used here are Skaltsa et al. (2010) <doi:10.1002/bimj.200900294> and Heagerty et al. (2000) <doi:10.1111/j.0006-341x.2000.00337.x>.
Estimation of time-dependent ROC curve and area under time dependent ROC curve (AUC) in the presence of censored data, with or without competing risks. Confidence intervals of AUCs and tests for comparing AUCs of two rival markers measured on the same subjects can be computed, using the iid-representation of the AUC estimator. Plot functions for time-dependent ROC curves and AUC curves are provided. Time-dependent Positive Predictive Values (PPV) and Negative Predictive Values (NPV) can also be computed. See Blanche et al. (2013) <doi:10.1002/sim.5958> and references therein for the details of the methods implemented in the package.
Streamline the processing of Telraam data, sourced from open data mobility sensors. These tools range from data retrieval (without the need for API knowledge) to data visualization, including data preprocessing.
Data handling and estimation functions for animal movement estimation from archival or satellite tags. Helper functions are included for making image summaries binned by time interval from Markov Chain Monte Carlo simulations.
Uses the Distorted Wave Born Approximation (DWBA) to compute the acoustic backward scattering, the geometry of the object is formed by a volumetric mesh, composed of tetrahedrons. This computation is done efficiently through an analytical 3D integration that allows for a solution which is expressed in terms of elementary functions for each tetrahedron. It is important to note that this method is only valid for objects whose acoustic properties, such as density and sound speed, do not vary significantly compared to the surrounding medium. (See Lavia, Cascallares and Gonzalez, J. D. (2023). TetraScatt model: Born approximation for the estimation of acoustic dispersion of fluid-like objects of arbitrary geometries. arXiv preprint <arXiv:2312.16721>).
The Twilio web service provides an API for computer programs to interact with telephony. The included functions wrap the SMS and MMS portions of Twilio's API, allowing users to send and receive text messages from R. See <https://www.twilio.com/docs/> for more information.
This package provides diverse datasets in the tsibble data structure. These datasets are useful for learning and demonstrating how tidy temporal data can tidied, visualised, and forecasted.
Compositional data consisting of three-parts can be color mapped with a ternary color scale. Such a scale is provided by the tricolore packages with options for discrete and continuous colors, mean-centering and scaling. See Jonas Schöley (2021) "The centered ternary balance scheme. A technique to visualize surfaces of unbalanced three-part compositions" <doi:10.4054/DemRes.2021.44.19>, Jonas Schöley, Frans Willekens (2017) "Visualizing compositional data on the Lexis surface" <doi:10.4054/DemRes.2017.36.21>, and Ilya Kashnitsky, Jonas Schöley (2018) "Regional population structures at a glance" <doi:10.1016/S0140-6736(18)31194-2>.
This package provides a synthetic control offers a way of evaluating the effect of an intervention in comparative case studies. The package makes a number of improvements when implementing the method in R. These improvements allow users to inspect, visualize, and tune the synthetic control more easily. A key benefit of a tidy implementation is that the entire preparation process for building the synthetic control can be accomplished in a single pipe.
Estimation of the SF-ACE, a Causal Inference estimand proposed in the paper "The Subtype-Free Average Causal Effect For Heterogeneous Disease Etiology" (soon on arXiv).
Generalized estimating equations (GEE) are a popular choice for analyzing longitudinal binary outcomes. This package provides an interface for fitting GEE, currently for logistic regression, within the tern <https://cran.r-project.org/package=tern> framework (Zhu, Sabanés Bové et al., 2023) and tabulate results easily using rtables <https://cran.r-project.org/package=rtables> (Becker, Waddell et al., 2023). It builds on geepack <doi:10.18637/jss.v015.i02> (Højsgaard, Halekoh and Yan, 2006) for the actual GEE model fitting.
Calculates several thermal comfort indexes using temperature, wind speed and relative humidity values, calculating indexes such as Humidex, windchill, Discomfort Index and others.
Turn complex JSON data into tidy data frames.
This package implements an Entropy measure of dependence based on the Bhattacharya-Hellinger-Matusita distance. Can be used as a (nonlinear) autocorrelation/crosscorrelation function for continuous and categorical time series. The package includes tests for serial and cross dependence and nonlinearity based on it. Some routines have a parallel version that can be used in a multicore/cluster environment. The package makes use of S4 classes.
This package provides a traceability focused tool created to simplify the data manipulation necessary to create clinical summaries.
Makes data wrangling with ID-related aspects more comfortable. Provides functions that make it easy to inspect various subject-generated ID codes (SGIC) for plausibility. Also helps with inspecting other common identifiers, ensuring that your data stays clean and reliable.
Calculates the robust Taba linear, Taba rank (monotonic), TabWil, and TabWil rank correlations. Test statistics as well as one sided or two sided p-values are provided for all correlations. Multiple correlations and p-values can be calculated simultaneously across multiple variables. In addition, users will have the option to use the partial, semipartial, and generalized partial correlations; where the partial and semipartial correlations use linear, logistic, or Poisson regression to modify the specified variable.
Enhances koRpus text object classes and methods to also support large corpora. Hierarchical ordering of corpus texts into arbitrary categories will be preserved. Provided classes and methods also improve the ability of using the koRpus package together with the tm package. To ask for help, report bugs, suggest feature improvements, or discuss the global development of the package, please subscribe to the koRpus-dev mailing list (<https://korpusml.reaktanz.de>).
The main purpose of this package is to propose a rigorous framework to fairly compare trip distribution laws and models as described in Lenormand et al. (2016) <doi:10.1016/j.jtrangeo.2015.12.008>.
In order to easily integrate geoRSS data into analysis, tidygeoRSS parses geo feeds and returns tidy simple features data frames.
This package provides a tool for comprehensive transcriptomic data analysis, with a focus on transcript-level data preprocessing, expression profiling, differential expression analysis, and functional enrichment. It enables researchers to identify key biological processes, disease biomarkers, and gene regulatory mechanisms. TransProR is aimed at researchers and bioinformaticians working with RNA-Seq data, providing an intuitive framework for in-depth analysis and visualization of transcriptomic datasets. The package includes comprehensive documentation and usage examples to guide users through the entire analysis pipeline. The differential expression analysis methods incorporated in the package include limma (Ritchie et al., 2015, <doi:10.1093/nar/gkv007>; Smyth, 2005, <doi:10.1007/0-387-29362-0_23>), edgeR (Robinson et al., 2010, <doi:10.1093/bioinformatics/btp616>), DESeq2 (Love et al., 2014, <doi:10.1186/s13059-014-0550-8>), and Wilcoxon tests (Li et al., 2022, <doi:10.1186/s13059-022-02648-4>), providing flexible and robust approaches to RNA-Seq data analysis. For more information, refer to the package vignettes and related publications.
This package provides new layer functions to tmap for drawing glyphs. A glyph is a small chart (e.g., donut chart) shown at specific map locations to visualize multivariate or time-series data. The functions work with the syntax of tmap and allow flexible control over size, layout, and appearance.