Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Combining P-values from multiple statistical tests is common in bioinformatics. However, this procedure is non-trivial for dependent P-values. This package implements an empirical adaptation of Brown’s Method (an extension of Fisher’s Method) for combining dependent P-values which is appropriate for highly correlated data sets found in high-throughput biological experiments.
This package builds on existing tools and adds some simple but extremely useful capabilities for working wth ChIP-Seq data. The focus is on detecting differential binding windows/regions. One set of functions focusses on set-operations retaining mcols for GRanges objects, whilst another group of functions are to aid visualisation of results. Coercion to tibble objects is also implemented.
EventPointer is an R package to identify alternative splicing events that involve either simple (case-control experiment) or complex experimental designs such as time course experiments and studies including paired-samples. The algorithm can be used to analyze data from either junction arrays (Affymetrix Arrays) or sequencing data (RNA-Seq). The software returns a data.frame with the detected alternative splicing events: gene name, type of event (cassette, alternative 3',...,etc), genomic position, statistical significance and increment of the percent spliced in (Delta PSI) for all the events. The algorithm can generate a series of files to visualize the detected alternative splicing events in IGV. This eases the interpretation of results and the design of primers for standard PCR validation.
epidecodeR is a package capable of analysing impact of degree of DNA/RNA epigenetic chemical modifications on dysregulation of genes or proteins. This package integrates chemical modification data generated from a host of epigenomic or epitranscriptomic techniques such as ChIP-seq, ATAC-seq, m6A-seq, etc. and dysregulated gene lists in the form of differential gene expression, ribosome occupancy or differential protein translation and identify impact of dysregulation of genes caused due to varying degrees of chemical modifications associated with the genes. epidecodeR generates cumulative distribution function (CDF) plots showing shifts in trend of overall log2FC between genes divided into groups based on the degree of modification associated with the genes. The tool also tests for significance of difference in log2FC between groups of genes.
Epialleles are specific DNA methylation patterns that are mitotically and/or meiotically inherited. This package calls and reports cytosine methylation as well as frequencies of hypermethylated epialleles at the level of genomic regions or individual cytosines in next-generation sequencing data using binary alignment map (BAM) files as an input. Among other things, this package can also extract and visualise methylation patterns and assess allele specificity of methylation.
An Empirical Bayesian Approach to Differential Co-Expression Analysis at the Gene-Pair Level.
eudysbiome a package that permits to annotate the differential genera as harmful/harmless based on their ability to contribute to host diseases (as indicated in literature) or unknown based on their ambiguous genus classification. Further, the package statistically measures the eubiotic (harmless genera increase or harmful genera decrease) or dysbiotic(harmless genera decrease or harmful genera increase) impact of a given treatment or environmental change on the (gut-intestinal, GI) microbiome in comparison to the microbiome of the reference condition.
Genomic coordinates of problematic genomic regions that should be avoided when working with genomic data. GRanges of exclusion regions (formerly known as blacklisted), centromeres, telomeres, known heterochromatin regions, etc. (UCSC gap table data). Primarily for human and mouse genomes, hg19/hg38 and mm9/mm10 genome assemblies.
Exposes an annotation databases generated from Ensembl.
To implement disease ontology (DO) enrichment analysis, this package is designed and presents a double weighted model based on the latest annotations of the human genome with DO terms, by integrating the DO graph topology on a global scale. This package exhibits high accuracy that it can identify more specific DO terms, which alleviates the over enriched problem. The package includes various statistical models and visualization schemes for discovering the associations between genes and diseases from biological big data.
The edge package implements methods for carrying out differential expression analyses of genome-wide gene expression studies. Significance testing using the optimal discovery procedure and generalized likelihood ratio tests (equivalent to F-tests and t-tests) are implemented for general study designs. Special functions are available to facilitate the analysis of common study designs, including time course experiments. Other packages such as sva and qvalue are integrated in edge to provide a wide range of tools for gene expression analysis.
This package provides a framework and complete preset pipeline for quantification and analysis of ATAC-seq Reads. It covers raw sequencing reads preprocessing (FASTQ files), reads alignment (Rbowtie2), aligned reads file operations (SAM, BAM, and BED files), peak calling (F-seq), genome annotations (Motif, GO, SNP analysis) and quality control report. The package is managed by dataflow graph. It is easy for user to pass variables seamlessly between processes and understand the workflow. Users can process FASTQ files through end-to-end preset pipeline which produces a pretty HTML report for quality control and preliminary statistical results, or customize workflow starting from any intermediate stages with esATAC functions easily and flexibly.
This package enables the visualization of functional enrichment results as network graphs. First the package enables the visualization of enrichment results, in a format corresponding to the one generated by gprofiler2, as a customizable Cytoscape network. In those networks, both gene datasets (GO terms/pathways/protein complexes) and genes associated to the datasets are represented as nodes. While the edges connect each gene to its dataset(s). The package also provides the option to create enrichment maps from functional enrichment results. Enrichment maps enable the visualization of enriched terms into a network with edges connecting overlapping genes.
Determine sample ploidy via flow cytometry histogram analysis. Reads Flow Cytometry Standard (FCS) files via the flowCore bioconductor package, and provides functions for determining the DNA ploidy of samples based on internal standards.
An R package that tests for enrichment and depletion of user-defined pathways using a Fisher's exact test. The method is designed for versatile pathway annotation formats (eg. gmt, txt, xlsx) to allow the user to run pathway analysis on custom annotations. This package is also integrated with Cytoscape to provide network-based pathway visualization that enhances the interpretability of the results.
This package provides tools for automated sequential gating analogous to the manual gating strategy based on the density of the data.
Cell clustering is one of the most important and commonly performed tasks in single-cell RNA sequencing (scRNA-seq) data analysis. An important step in cell clustering is to select a subset of genes (referred to as “features”), whose expression patterns will then be used for downstream clustering. A good set of features should include the ones that distinguish different cell types, and the quality of such set could have significant impact on the clustering accuracy. FEAST is an R library for selecting most representative features before performing the core of scRNA-seq clustering. It can be used as a plug-in for the etablished clustering algorithms such as SC3, TSCAN, SHARP, SIMLR, and Seurat. The core of FEAST algorithm includes three steps: 1. consensus clustering; 2. gene-level significance inference; 3. validation of an optimized feature set.
Fragment-level analysis of gas chromatography-massspectrometry metabolomics data.
Raw data objects to be used for umbilical cord blood cell proportion estimation in minfi and similar packages. The FlowSorted.CordBloodCombined.450k object is based in samples assayed by Bakulski et al, Gervin et al., de Goede et al., and Lin et al.
Matching cell populations and building meta-clusters and templates from a collection of FC samples.
FANTOM4 promoters, liftOver'ed from hg18 to hg19, CpGs quantified.
This package provides a RangedSummarizedExperiment object of read counts in genes for a time course RNA-Seq experiment of fission yeast (Schizosaccharomyces pombe) in response to oxidative stress (1M sorbitol treatment) at 0, 15, 30, 60, 120 and 180 mins. The samples are further divided between a wild-type group and a group with deletion of atf21. The read count matrix was prepared and provided by the author of the study: Leong HS, Dawson K, Wirth C, Li Y, Connolly Y, Smith DL, Wilkinson CR, Miller CJ. "A global non-coding RNA system modulates fission yeast protein levels in response to stress". Nat Commun 2014 May 23;5:3947. PMID: 24853205. GEO: GSE56761.
This package contains two main functions. The first is fdr.ma which takes normalized expression data array, experimental design and computes adjusted p-values It returns the fdr adjusted p-values and plots, according to the methods described in (Reiner, Yekutieli and Benjamini 2002). The second, is fdr.gui() which creates a simple graphic user interface to access fdr.ma.
This package reproduces the systems biology analysis for the data in package Fletcher2013a using RTN.