Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implement the Tariff algorithm for coding cause-of-death from verbal autopsies. The Tariff method was originally proposed in James et al (2011) <DOI:10.1186/1478-7954-9-31> and later refined as Tariff 2.0 in Serina, et al. (2015) <DOI:10.1186/s12916-015-0527-9>. Note that this package was not developed by authors affiliated with the Institute for Health Metrics and Evaluation and thus unintentional discrepancies may exist between the this implementation and the implementation available from IHME.
Sensitivity analysis using the trimmed means estimator.
This groundbreaking technical indicator directly integrates volatility into price averaging by weighting median range-bound prices using the True Range. Unlike conventional metrics such as TWAP (Time-Weighted Average Price), which focuses solely on time, or VWAP (Volume-Weighted Average Price), which emphasizes volume, TrueWAP captures fluctuating market behavior by reflecting true price movement within high/low performance boundaries.
Compile Typst files using the typst-cli (<https://typst.app>) command line tool. Automatically falls back to rendering via embedded Typst from Quarto (<https://quarto.org>) if Typst is not installed. Includes utilities to check for typst-cli availability and run Typst commands.
This package implements nonlinear autoregressive (AR) time series models. For univariate series, a non-parametric approach is available through additive nonlinear AR. Parametric modeling and testing for regime switching dynamics is available when the transition is either direct (TAR: threshold AR) or smooth (STAR: smooth transition AR, LSTAR). For multivariate series, one can estimate a range of TVAR or threshold cointegration TVECM models with two or three regimes. Tests can be conducted for TVAR as well as for TVECM (Hansen and Seo 2002 and Seo 2006).
Time series forecasting faces challenges due to the non-stationarity, nonlinearity, and chaotic nature of the data. Traditional deep learning models like Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) process data sequentially but are inefficient for long sequences. To overcome the limitations of these models, we proposed a transformer-based deep learning architecture utilizing an attention mechanism for parallel processing, enhancing prediction accuracy and efficiency. This paper presents user-friendly code for the implementation of the proposed transformer-based deep learning architecture utilizing an attention mechanism for parallel processing. References: Nayak et al. (2024) <doi:10.1007/s40808-023-01944-7> and Nayak et al. (2024) <doi:10.1016/j.simpa.2024.100716>.
This package implements a likelihood ratio test and two pairwise standardized mean difference tests for testing equality of means against tree ordered alternatives in one-way ANOVA. The null hypothesis assumes all group means are equal, while the alternative assumes the control mean is less than or equal to each treatment mean with at least one strict inequality. Inputs are a list of numeric vectors (groups) and a significance level; outputs include the test statistic, critical value, and decision. Methods described in "Testing Against Tree Ordered Alternatives in One-way ANOVA" <doi:10.48550/arXiv.2507.17229>.
Likelihood ratio and maximum likelihood statistics are provided that can be used as alternatives to p-values Colquhoun (2017) <doi:10.1098/rsos.171085>. Arguments can be either p-values or t-statistics. together with degrees of freedom. For the function tTOlr', the argument twoSided has the default twoSided = TRUE'.
Simulation, estimation and inference for univariate and multivariate TV(s)-GARCH(p,q,r)-X models, where s indicates the number and shape of the transition functions, p is the ARCH order, q is the GARCH order, r is the asymmetry order, and X indicates that covariates can be included; see Campos-Martins and Sucarrat (2024) <doi:10.18637/jss.v108.i09>. In the multivariate case, variances are estimated equation by equation and dynamic conditional correlations are allowed. The TV long-term component of the variance as in the multiplicative TV-GARCH model of Amado and Terasvirta (2013) <doi:10.1016/j.jeconom.2013.03.006> introduces non-stationarity whereas the GARCH-X short-term component describes conditional heteroscedasticity. Maximisation by parts leads to consistent and asymptotically normal estimates.
Implementation and forecasting univariate time series data using the Support Vector Machine model. Support Vector Machine is one of the prominent machine learning approach for non-linear time series forecasting. For method details see Kim, K. (2003) <doi:10.1016/S0925-2312(03)00372-2>.
Optimizers for torch deep learning library. These functions include recent results published in the literature and are not part of the optimizers offered in torch'. Prospective users should test these optimizers with their data, since performance depends on the specific problem being solved. The packages includes the following optimizers: (a) adabelief by Zhuang et al (2020), <arXiv:2010.07468>; (b) adabound by Luo et al.(2019), <arXiv:1902.09843>; (c) adahessian by Yao et al.(2021) <arXiv:2006.00719>; (d) adamw by Loshchilov & Hutter (2019), <arXiv:1711.05101>; (e) madgrad by Defazio and Jelassi (2021), <arXiv:2101.11075>; (f) nadam by Dozat (2019), <https://openreview.net/pdf/OM0jvwB8jIp57ZJjtNEZ.pdf>; (g) qhadam by Ma and Yarats(2019), <arXiv:1810.06801>; (h) radam by Liu et al. (2019), <arXiv:1908.03265>; (i) swats by Shekar and Sochee (2018), <arXiv:1712.07628>; (j) yogi by Zaheer et al.(2019), <https://papers.nips.cc/paper/8186-adaptive-methods-for-nonconvex-optimization>.
Unleash the power of time-series data visualization with ease using our package. Designed with simplicity in mind, it offers three key features through the shiny package output. The first tab shows time- series charts with forecasts, allowing users to visualize trends and changes effortlessly. The second one displays Averages per country presented in tables with accompanying sparklines, providing a quick and attractive overview of the data. The last tab presents A customizable world map colored based on user-defined variables for any chosen number of countries, offering an advanced visual approach to understanding geographical data distributions. This package operates with just a few simple arguments, enabling users to conduct sophisticated analyses without the need for complex programming skills. Transform your time-series data analysis experience with our user-friendly tool.
Fit, compare, and visualize Bayesian graphical vector autoregressive (GVAR) network models using Stan'. These models are commonly used in psychology to represent temporal and contemporaneous relationships between multiple variables in intensive longitudinal data. Fitted models can be compared with a test based on matrix norm differences of posterior point estimates to quantify the differences between two estimated networks. See also Siepe, Kloft & Heck (2024) <doi:10.31234/osf.io/uwfjc>.
This application provides exploratory and confirmatory factor analysis, classical test theory, unidimensional and multidimensional item response theory, and continuous item response model analysis, through the shiny interactive interface. In addition, it offers rich functionalities for visualizing and downloading results. Users can download figures, tables, and analysis reports via the interactive interface.
This package provides an easy-to-use tind class representing time indices of different types (years, quarters, months, ISO 8601 weeks, dates, time of day, date-time, and arbitrary integer/numeric indices). Includes an extensive collection of functions for calendrical computations (including business applications), index conversions, index parsing, and other operations. Auxiliary classes representing time differences and time intervals (with set operations and index matching functionality) are also provided. All routines have been optimised for speed in order to facilitate computations on large datasets. More details regarding calendars in general and calendrical algorithms can be found in "Calendar FAQ" by Claus Tøndering <https://www.tondering.dk/claus/calendar.html>.
Attain excellent covariate balance by matching two treated units and one control unit or vice versa within strata. Using such triples, as opposed to also allowing pairs of treated and control units, allows easier interpretation of the two possible weights of observations and better insensitivity to unmeasured bias in the test statistic. Using triples instead of matching in a fixed 1:2 or 2:1 ratio allows for the match to be feasible in more situations. The rrelaxiv package, which provides an alternative solver for the underlying network flow problems, carries an academic license and is not available on CRAN, but may be downloaded from GitHub at <https://github.com/josherrickson/rrelaxiv/>. The Gurobi commercial optimization software is required to use the two functions [infsentrip()] and [triplesIP()]. These functions are not essential to the main purpose of this package. A free academic license can be obtained at <https://www.gurobi.com/features/academic-named-user-license/>. The gurobi R package can then be installed following the instructions at <https://www.gurobi.com/documentation/9.1/refman/ins_the_r_package.html>.
Perform two types of analysis: 1) checking the goodness-of-fit of tree models to your single-cell gene expression data; and 2) deciding which tree best fits your data.
Helper functions for processing REDCap data in R. REDCap is a web-enabled application for building and managing surveys and databases developed at Vanderbilt University.
This package implements the Maximum Likelihood estimator for baseline, placebo, and treatment groups (three-group) experiments with non-compliance proposed by Gerber, Green, Kaplan, and Kern (2010).
TEMPoral TEnsor Decomposition (TEMPTED), is a dimension reduction method for multivariate longitudinal data with varying temporal sampling. It formats the data into a temporal tensor and decomposes it into a summation of low-dimensional components, each consisting of a subject loading vector, a feature loading vector, and a continuous temporal loading function. These loadings provide a low-dimensional representation of subjects or samples and can be used to identify features associated with clusters of subjects or samples. TEMPTED provides the flexibility of allowing subjects to have different temporal sampling, so time points do not need to be binned, and missing time points do not need to be imputed.
To make the semiparametric transformation models easier to apply in real studies, we introduce this R package, in which the MLE in transformation models via an EM algorithm proposed by Zeng D, Lin DY(2007) <doi:10.1111/j.1369-7412.2007.00606.x> and adaptive lasso method in transformation models proposed by Liu XX, Zeng D(2013) <doi:10.1093/biomet/ast029> are implemented. C++ functions are used to compute complex loops. The coefficient vector and cumulative baseline hazard function can be estimated, along with the corresponding standard errors and P values.
This package provides a standardized user interface for column selection, that facilitates dataset merging in teal framework.
An object model for source text and translations. Find and extract translatable strings. Provide translations and seamlessly retrieve them at runtime.
Fits 2D and 3D geometric transformations via Stan probabilistic programming engine ( Stan Development Team (2021) <https://mc-stan.org>). Returns posterior distribution for individual parameters of the fitted distribution. Allows for computation of LOO and WAIC information criteria (Vehtari A, Gelman A, Gabry J (2017) <doi:10.1007/s11222-016-9696-4>) as well as Bayesian R-squared (Gelman A, Goodrich B, Gabry J, and Vehtari A (2018) <doi:10.1080/00031305.2018.1549100>).