Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Maximum likelihood estimation of the parameters of matrix and 3rd-order tensor normal distributions with unstructured factor variance covariance matrices, two procedures, and for unbiased modified likelihood ratio testing of simple and double separability for variance-covariance structures, two procedures. References: Dutilleul P. (1999) <doi:10.1080/00949659908811970>, Manceur AM, Dutilleul P. (2013) <doi:10.1016/j.cam.2012.09.017>, and Manceur AM, Dutilleul P. (2013) <doi:10.1016/j.spl.2012.10.020>.
Spectral and Average Autocorrelation Zero Distance Density ('sazed') is a method for estimating the season length of a seasonal time series. sazed is aimed at practitioners, as it employs only domain-agnostic preprocessing and does not depend on parameter tuning or empirical constants. The computation of sazed relies on the efficient autocorrelation computation methods suggested by Thibauld Nion (2012, URL: <https://etudes.tibonihoo.net/literate_musing/autocorrelations.html>) and by Bob Carpenter (2012, URL: <https://lingpipe-blog.com/2012/06/08/autocorrelation-fft-kiss-eigen/>).
To investigate the functional characteristics of selected SNPs and their vicinity genomic region. Linked SNPs in moderate to high linkage disequilibrium (e.g. r2>0.50) with the corresponding index SNPs will be selected for further analysis.
This package provides a toolkit for simulation studies concerning time-to-event endpoints with non-proportional hazards. SimNPH encompasses functions for simulating time-to-event data in various scenarios, simulating different trial designs like fixed-followup, event-driven, and group sequential designs. The package provides functions to calculate the true values of common summary statistics for the implemented scenarios and offers common analysis methods for time-to-event data. Helper functions for running simulations with the SimDesign package and for aggregating and presenting the results are also included. Results of the conducted simulation study are available in the paper: "A Comparison of Statistical Methods for Time-To-Event Analyses in Randomized Controlled Trials Under Non-Proportional Hazards", Klinglmüller et al. (2025) <doi:10.1002/sim.70019>.
This package provides a collection of functions to search and download street view imagery ('Mapilary <https://www.mapillary.com/developer/api-documentation>) and to extract, quantify, and visualize visual features. Moreover, there are functions provided to generate Qualtrics survey in TXT format using the collection of street views for various research purposes.
This package provides functions that compute the spatial covariance matrix for the matern and power classes of spatial models, for data that arise on rectangular units. This code can also be used for the change of support problem and for spatial data that arise on irregularly shaped regions like counties or zipcodes by laying a fine grid of rectangles and aggregating the integrals in a form of Riemann integration.
Computes Strongest Neighbor Coherence (SNC), a structural diagnostic that replaces Cronbach's alpha using top-k correlation structure. For methodology, see Wells (2025) <https://github.com/TheotherDrWells/snc>.
This package provides a socket server allows to connect clients to R.
This package provides a tool that makes estimating models in state space form a breeze. See "Time Series Analysis by State Space Methods" by Durbin and Koopman (2012, ISBN: 978-0-19-964117-8) for details about the algorithms implemented.
Performing Item Response Theory analysis such as parameter estimation, ability estimation, item and model fit analyse, local independence assumption, dimensionality assumption, characteristic and information curves under various models with a user friendly shiny interface.
This package provides indices and tools for directed acyclic graphs (DAGs), particularly DAG representations of intermittent streams. A detailed introduction to the package can be found in the publication: "Non-perennial stream networks as directed acyclic graphs: The R-package streamDAG" (Aho et al., 2023) <doi:10.1016/j.envsoft.2023.105775>, and in the introductory package vignette.
Explore and analyse the genealogy of textual or musical traditions, from their variants, with various stemmatological methods, mainly the disagreement-based algorithms suggested by Camps and Cafiero (2015) <doi:10.1484/M.LECTIO-EB.5.102565>.
Make R data available in Web-based virtual reality experiences for immersive, cross-platform data visualizations. Includes the gg-aframe JavaScript package for a Grammar of Graphics declarative HTML syntax to create 3-dimensional data visualizations with Mozilla A-Frame <https://aframe.io>.
Routine that allows the user to run several goodness-of-fit tests. It also combines the tests and returns a properly adjusted family-wise p value. Details can be found in <arXiv:2007.04727>.
An implementation of self-exciting point process model for information cascades, which occurs when many people engage in the same acts after observing the actions of others (e.g. post resharings on Facebook or Twitter). It provides functions to estimate the infectiousness of an information cascade and predict its popularity given the observed history. See <http://snap.stanford.edu/seismic/> for more information and datasets.
This package provides a consistent interface to use various methods to calculate the periodogram and estimate the period of a rhythmic time-course. Methods include Lomb-Scargle, fast Fourier transform, and three versions of the chi-square periodogram. See Tackenberg and Hughey (2021) <doi:10.1371/journal.pcbi.1008567>.
The complete scripts from the American version of the Office television show in tibble format. Use this package to analyze and have fun with text from the best series of all time.
Allows user to conduct a simulation based quantitative bias analysis using covariate structures generated with individual-level data to characterize the bias arising from unmeasured confounding. Users can specify their desired data generating mechanisms to simulate data and quantitatively summarize findings in an end-to-end application using this package.
Allows TailwindCSS to be used in Shiny apps with just-in-time compiling, custom css with @apply directive, and custom tailwind configurations.
Generates artificial point patterns marked by their spatial and temporal signatures. The resulting point cloud may exhibit inherent interactions between both signatures. The simulation integrates microsimulation (Holm, E., (2017)<doi:10.1002/9781118786352.wbieg0320>) and agent-based models (Bonabeau, E., (2002)<doi:10.1073/pnas.082080899>), beginning with the configuration of movement characteristics for the specified agents (referred to as walkers') and their interactions within the simulation environment. These interactions (Quaglietta, L. and Porto, M., (2019)<doi:10.1186/s40462-019-0154-8>) result in specific spatiotemporal patterns that can be visualized, analyzed, and used for various analytical purposes. Given the growing scarcity of detailed spatiotemporal data across many domains, this package provides an alternative data source for applications in social and life sciences.
This package implements the Sliding Window Discrete Fourier Transform (SWDFT). Also provides statistical methods based on the SWDFT, and graphical tools to display the outputs.
Track and record the use of applications and the user's interactions with Shiny inputs. Allows to trace the inputs with which the user interacts, the outputs generated, as well as the errors displayed in the interface.
This package implements a segmentation algorithm for multiple change-point detection in high-dimensional GARCH processes. It simultaneously segments GARCH processes by identifying common change-points, each of which can be shared by a subset or all of the component time series as a change-point in their within-series and/or cross-sectional correlation structure.
This package provides a tool for producing synthetic versions of microdata containing confidential information so that they are safe to be released to users for exploratory analysis. The key objective of generating synthetic data is to replace sensitive original values with synthetic ones causing minimal distortion of the statistical information contained in the data set. Variables, which can be categorical or continuous, are synthesised one-by-one using sequential modelling. Replacements are generated by drawing from conditional distributions fitted to the original data using parametric or classification and regression trees models. Data are synthesised via the function syn() which can be largely automated, if default settings are used, or with methods defined by the user. Optional parameters can be used to influence the disclosure risk and the analytical quality of the synthesised data. For a description of the implemented method see Nowok, Raab and Dibben (2016) <doi:10.18637/jss.v074.i11>. Functions to assess identity and attribute disclosure for the original and for the synthetic data are included in the package, and their use is illustrated in a vignette on disclosure (Practical Privacy Metrics for Synthetic Data).