Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The goal of this package is to cover the most common steps in Loss Given Default (LGD) rating model development. The main procedures available are those that refer to bivariate and multivariate analysis. In particular two statistical methods for multivariate analysis are currently implemented â OLS regression and fractional logistic regression. Both methods are also available within different blockwise model designs and both have customized stepwise algorithms. Descriptions of these customized designs are available in Siddiqi (2016) <doi:10.1002/9781119282396.ch10> and Anderson, R.A. (2021) <doi:10.1093/oso/9780192844194.001.0001>. Although they are explained for PD model, the same designs are applicable for LGD model with different underlying regression methods (OLS and fractional logistic regression). To cover other important steps for LGD model development, it is recommended to use LGDtoolkit package along with PDtoolkit', and monobin (or monobinShiny') packages. Additionally, LGDtoolkit provides set of procedures handy for initial and periodical model validation.
Bayesian population size estimation using non parametric latent-class models.
Companion toolbox for structural equation models fitted with lavaan'. Provides post-estimation diagnostics and graphics that operate directly on a fitted object using its estimates and covariance, and refits auxiliary models when needed. The package relies on lavaan (Rosseel, 2012) <doi:10.18637/jss.v048.i02>.
Random forests are a statistical learning method widely used in many areas of scientific research essentially for its ability to learn complex relationships between input and output variables and also its capacity to handle high-dimensional data. However, current random forests approaches are not flexible enough to handle longitudinal data. In this package, we propose a general approach of random forests for high-dimensional longitudinal data. It includes a flexible stochastic model which allows the covariance structure to vary over time. Furthermore, we introduce a new method which takes intra-individual covariance into consideration to build random forests. The method is fully detailled in Capitaine et.al. (2020) <doi:10.1177/0962280220946080> Random forests for high-dimensional longitudinal data.
Reads raw files from Li-COR gas analyzers and produces a dataframe that can directly be used with fluxible <https://cran.r-project.org/package=fluxible>.
This package performs Levins loop analysis of qualitatively-specified complex causal systems. Loop analysis makes qualitative predictions of variable change in a system of causally interdependent variables, where "qualitative" means direct causal relationships and indirect causal effects are coded as sign only (i.e. increases, decreases, no change, and ambiguous). This implementation includes output support for graphs in .dot file format for use with visualization software such as graphviz (<https://graphviz.org>). LoopAnalyst provides tools for the construction and output of community matrices, computation and output of community effect matrices, tables of correlations, adjoint, absolute feedback, weighted feedback and weighted prediction matrices, change in life expectancy matrices, and feedback, path and loop enumeration tools.
Efficient procedures for fitting the regularization path for linear, binomial, multinomial, Ising and Potts models with lasso, group lasso or column lasso(only for multinomial) penalty. The package uses Linearized Bregman Algorithm to solve the regularization path through iterations. Bregman Inverse Scale Space Differential Inclusion solver is also provided for linear model with lasso penalty.
This package provides density, distribution and random generation functions for the Linear Ballistic Accumulation (LBA) model, a widely used choice response time model in cognitive psychology. The package supports model specifications, parameter estimation, and likelihood computation, facilitating simulation and statistical inference for LBA-based experiments. For details on the LBA model, see Brown and Heathcote (2008) <doi:10.1016/j.cogpsych.2007.12.002>.
This package provides functions for simulating missing morphometric data randomly, with taxonomic bias and with anatomical bias. LOST also includes functions for estimating linear and geometric morphometric data.
This package provides a joint latent class model where a hierarchical structure exists, with an interaction between female and male partners of a couple. A Bayesian perspective to inference and Markov chain Monte Carlo algorithms to obtain posterior estimates of model parameters. The reference paper is: Beom Seuk Hwang, Zhen Chen, Germaine M.Buck Louis, Paul S. Albert, (2018) "A Bayesian multi-dimensional couple-based latent risk model with an application to infertility". Biometrics, 75, 315-325. <doi:10.1111/biom.12972>.
Implementation of a theoretically supported alternative to k-nearest neighbors for functional data to solve problems of estimating unobserved segments of a partially observed functional data sample, functional classification and outlier detection. The approximating neighbor curves are piecewise functions built from a functional sample. Instead of a distance on a function space we use a locally defined distance function that satisfies stabilization criteria. The package allows the implementation of the methodology and the replication of the results in Elà as, A., Jiménez, R. and Yukich, J. (2020) <arXiv:2007.16059>.
Constructs genotype x environment interaction (GxE) models where G is a weighted sum of genetic variants (genetic score) and E is a weighted sum of environments (environmental score) using the alternating optimization algorithm by Jolicoeur-Martineau et al. (2017) <arXiv:1703.08111>. This approach has greatly enhanced predictive power over traditional GxE models which include only a single genetic variant and a single environmental exposure. Although this approach was originally made for GxE modelling, it is flexible and does not require the use of genetic and environmental variables. It can also handle more than 2 latent variables (rather than just G and E) and 3-way interactions or more. The LEGIT model produces highly interpretable results and is very parameter-efficient thus it can even be used with small sample sizes (n < 250). Tools to determine the type of interaction (vantage sensitivity, diathesis-stress or differential susceptibility), with any number of genetic variants or environments, are available <arXiv:1712.04058>. The software can now produce mixed-effects LEGIT models through the lme4 package.
Calculation of rectifying LTPD and AOQL plans for sampling inspection by variables which minimize mean inspection cost per lot of process average quality.
Generates quotes from Lero Lero', a database for meaningless sentences filled with corporate buzzwords, intended to be used as corporate lorem ipsum (see <http://www.lerolero.com/> for more information). Unfortunately, quotes are currently portuguese-only.
Identifying latent genetic interactions in genome-wide association studies using the Latent Interaction Testing (LIT) framework. LIT is a flexible kernel-based approach that leverages information across multiple traits to detect latent genetic interactions without specifying or observing the interacting variable (e.g., environment). LIT accepts standard PLINK files as inputs to analyze large genome-wide association studies.
Estimate, fit and compare Structural Equation Models (SEM) and network models (Gaussian Graphical Models; GGM) using OpenMx. Allows for two possible generalizations to include GGMs in SEM: GGMs can be used between latent variables (latent network modeling; LNM) or between residuals (residual network modeling; RNM). For details, see Epskamp, Rhemtulla and Borsboom (2017) <doi:10.1007/s11336-017-9557-x>.
Lag-sequential analysis is a method of assessing of patterns (what tends to follow what?) in sequences of codes. The codes are typically for discrete behaviors or states. The functions in this package read a stream of codes, or a frequency transition matrix, and produce a variety of lag sequential statistics, including transitional frequencies, expected transitional frequencies, transitional probabilities, z values, adjusted residuals, Yule's Q values, likelihood ratio tests of stationarity across time and homogeneity across groups or segments, transformed kappas for unidirectional dependence, bidirectional dependence, parallel and nonparallel dominance, and significance levels based on both parametric and randomization tests. The methods are described in Bakeman & Quera (2011) <doi:10.1017/CBO9781139017343>, O'Connor (1999) <doi:10.3758/BF03200753>, Wampold & Margolin (1982) <doi:10.1037/0033-2909.92.3.755>, and Wampold (1995, ISBN:0-89391-919-5).
This package provides tools for assessing equivalence of similar Logistic Regression models.
It allows to cluster communication networks using the Stochastic Topic Block Model <doi:10.1007/s11222-016-9713-7> by posting jobs through the API of the linkage.fr server, which implements the clustering method. The package also allows to visualize the clustering results returned by the server.
European Commission's Labour Market Policy (LMP) database (<https://webgate.ec.europa.eu/empl/redisstat/databrowser/explore/all/lmp?lang=en&display=card&sort=category>) provides information on labour market interventions, which are government actions to help and support the unemployed and other disadvantaged groups in the transition from unemployment or inactivity to work. It covers the EU countries and Norway. This package provides functions for downloading and importing the LMP data and metadata (codelists).
Introduces in-sample, out-of-sample, pseudo out-of-sample, and benchmark model forecast tests and a new class for working with forecast data, Forecast.
This package provides tools to retrieve and summarize taxonomic information and synonymy data for reptile species using data scraped from The Reptile Database website (<https://reptile-database.reptarium.cz/>). Outputs include clean and structured data frames useful for ecological, evolutionary, and conservation research.
Provide sets of functions and methods to learn and practice data science using idea of algorithmic trading. Main goal is to process information within "Decision Support System" to come up with analysis or predictions. There are several utilities such as dynamic and adaptive risk management using reinforcement learning and even functions to generate predictions of price changes using pattern recognition deep regression learning. Summary of Methods used: Awesome H2O tutorials: <https://github.com/h2oai/awesome-h2o>, Market Type research of Van Tharp Institute: <https://vantharp.com/>, Reinforcement Learning R package: <https://CRAN.R-project.org/package=ReinforcementLearning>.
Set of tools for mapping of categorical response variables based on principal component analysis (pca) and multidimensional unfolding (mdu).