Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fast calculation of the Subtree Prune and Regraft (SPR), Tree Bisection and Reconnection (TBR) and Replug distances between unrooted trees, using the algorithms of Whidden and Matsen (2017) <doi:10.48550/arXiv.1511.07529>.
Estimates heterogeneous treatment effects using tidy semantics on experimental or observational data. Methods are based on the doubly-robust learner of Kennedy (2023) <doi:10.1214/23-EJS2157>. You provide a simple recipe for what machine learning algorithms to use in estimating the nuisance functions and tidyhte will take care of cross-validation, estimation, model selection, diagnostics and construction of relevant quantities of interest about the variability of treatment effects.
Instead of nesting function calls, annotate and transform functions using "#." comments.
Extensions to lattice', providing new high-level functions, methods for existing functions, panel functions, and a theme.
Fitting time-varying coefficient models for single and multi-equation regressions, using kernel smoothing techniques.
Two-stage procedure compares hazard rate functions, which may or may not cross each other.
Data frames with time information are subset and flagged with period information. Data frames with times are dealt as timeDF objects and periods are represented as periodDF objects.
Generalization of the classification and regression tree (CART) model that partitions subjects into terminal nodes and tailors machine learning model to each terminal node.
Innovative Trend Analysis is a graphical method to examine the trends in time series data. Sequential Mann-Kendall test uses the intersection of prograde and retrograde series to indicate the possible change point in time series data. Distribution free cumulative sum charts indicate location and significance of the change point in time series. Zekai, S. (2011). <doi:10.1061/(ASCE)HE.1943-5584.0000556>. Grayson, R. B. et al. (1996). Hydrological Recipes: Estimation Techniques in Australian Hydrology. Cooperative Research Centre for Catchment Hydrology, Australia, p. 125. Sneyers, S. (1990). On the statistical analysis of series of observations. Technical note no 5 143, WMO No 725 415. Secretariat of the World Meteorological Organization, Geneva, 192 pp.
Nonlinear growth models are extremely useful in gaining insight into the underlying mechanism. These models are generally mechanistic, with parameters that have biological meaning. This package allows you to fit and forecast time series data using nonlinear growth models.
This package implements the template ICA (independent components analysis) model proposed in Mejia et al. (2020) <doi:10.1080/01621459.2019.1679638> and the spatial template ICA model proposed in proposed in Mejia et al. (2022) <doi:10.1080/10618600.2022.2104289>. Both models estimate subject-level brain as deviations from known population-level networks, which are estimated using standard ICA algorithms. Both models employ an expectation-maximization algorithm for estimation of the latent brain networks and unknown model parameters. Includes direct support for CIFTI', GIFTI', and NIFTI neuroimaging file formats.
Recursive partytioning of transformation models with corresponding random forest for conditional transformation models as described in Transformation Forests (Hothorn and Zeileis, 2021, <doi:10.1080/10618600.2021.1872581>) and Top-Down Transformation Choice (Hothorn, 2018, <DOI:10.1177/1471082X17748081>).
Two- and three-dimensional morphometric maps of enamel and dentine thickness and multivariate analysis. Volume calculation of dental materials. Principal component analysis of thickness maps with associated morphometric map variations.
Accurately estimates phase shifts by accounting for period changes and for the point in the circadian cycle at which the stimulus occurs. See Tackenberg et al. (2018) <doi:10.1177/0748730418768116>.
Package test2norm contains functions to generate formulas for normative standards applied to cognitive tests. It takes raw test scores (e.g., number of correct responses) and converts them to scaled scores and demographically adjusted scores, using methods described in Heaton et al. (2003) <doi:10.1016/B978-012703570-3/50010-9> & Heaton et al. (2009, ISBN:9780199702800). The scaled scores are calculated as quantiles of the raw test scores, scaled to have the mean of 10 and standard deviation of 3, such that higher values always correspond to better performance on the test. The demographically adjusted scores are calculated from the residuals of a model that regresses scaled scores on demographic predictors (e.g., age). The norming procedure makes use of the mfp2() function from the mfp2 package to explore nonlinear associations between cognition and demographic variables.
This package provides a shiny app that generates plots and summary tables from repeat-dose toxicology study results to facilitate holistic evaluation of the drug safety of active pharmaceutical ingredients (API) prior to initiation of clinical trials.
Attain excellent covariate balance by matching two treated units and one control unit or vice versa within strata. Using such triples, as opposed to also allowing pairs of treated and control units, allows easier interpretation of the two possible weights of observations and better insensitivity to unmeasured bias in the test statistic. Using triples instead of matching in a fixed 1:2 or 2:1 ratio allows for the match to be feasible in more situations. The rrelaxiv package, which provides an alternative solver for the underlying network flow problems, carries an academic license and is not available on CRAN, but may be downloaded from GitHub at <https://github.com/josherrickson/rrelaxiv/>. The Gurobi commercial optimization software is required to use the two functions [infsentrip()] and [triplesIP()]. These functions are not essential to the main purpose of this package. A free academic license can be obtained at <https://www.gurobi.com/features/academic-named-user-license/>. The gurobi R package can then be installed following the instructions at <https://www.gurobi.com/documentation/9.1/refman/ins_the_r_package.html>.
Generic methods for use in a time series probabilistic framework, allowing for a common calling convention across packages. Additional methods for time series prediction ensembles and probabilistic plotting of predictions is included. A more detailed description is available at <https://www.nopredict.com/packages/tsmethods> which shows the currently implemented methods in the tsmodels framework.
Tri-hierarchical incomplete block design is defined as an arrangement of v treatments each replicated r times in a three system of blocks if, each block of the first system contains m_1 blocks of second system and each block of the second system contains m_2 blocks of the third system. Ignoring the first and second system of blocks, it leaves an incomplete block design with b_3 blocks of size k_3i units; ignoring first and third system of blocks, it leaves an incomplete block design with b_2 blocks each of size k_2i units and ignoring the second and third system of blocks, it leaves an incomplete block design with b_1 blocks each of size k_1 units. For dealing with experimental circumstances where there are three nested sources of variation, a tri-hierarchical incomplete block design can be adopted. Tri - hierarchical incomplete block designs can find application potential in obtaining mating-environmental designs for breeding trials. To know more about nested block designs one can refer Preece (1967) <doi:10.1093/biomet/54.3-4.479>. This package includes series1(), series2(), series3() and series4() functions. This package generates tri-hierarchical designs with six component designs under certain parameter restrictions.
Enhances koRpus text object classes and methods to also support large corpora. Hierarchical ordering of corpus texts into arbitrary categories will be preserved. Provided classes and methods also improve the ability of using the koRpus package together with the tm package. To ask for help, report bugs, suggest feature improvements, or discuss the global development of the package, please subscribe to the koRpus-dev mailing list (<https://korpusml.reaktanz.de>).
Record all tree-ring Shapefile of tree disk with GIS soft Qgis and interpolating model from high resolution tree disk image.
Plant ecologists often need to collect "traits" data about plant species which are often scattered among various databases: TR8 contains a set of tools which take care of automatically retrieving some of those functional traits data for plant species from publicly available databases (The Ecological Flora of the British Isles, LEDA traitbase, Ellenberg values for Italian Flora, Mycorrhizal intensity databases, BROT, PLANTS, Jepson Flora Project). The TR8 name, inspired by "car plates" jokes, was chosen since it both reminds of the main object of the package and is extremely short to type.
Simulation methods for phylogenetic trees where (i) all tips are sampled at one time point or (ii) tips are sampled sequentially through time. (i) For sampling at one time point, simulations are performed under a constant rate birth-death process, conditioned on having a fixed number of final tips (sim.bd.taxa()), or a fixed age (sim.bd.age()), or a fixed age and number of tips (sim.bd.taxa.age()). When conditioning on the number of final tips, the method allows for shifts in rates and mass extinction events during the birth-death process (sim.rateshift.taxa()). The function sim.bd.age() (and sim.rateshift.taxa() without extinction) allow the speciation rate to change in a density-dependent way. The LTT plots of the simulations can be displayed using LTT.plot(), LTT.plot.gen() and LTT.average.root(). TreeSim further samples trees with n final tips from a set of trees generated by the common sampling algorithm stopping when a fixed number m>>n of tips is first reached (sim.gsa.taxa()). This latter method is appropriate for m-tip trees generated under a big class of models (details in the sim.gsa.taxa() man page). For incomplete phylogeny, the missing speciation events can be added through simulations (corsim()). (ii) sim.rateshifts.taxa() is generalized to sim.bdsky.stt() for serially sampled trees, where the trees are conditioned on either the number of sampled tips or the age. Furthermore, for a multitype-branching process with sequential sampling, trees on a fixed number of tips can be simulated using sim.bdtypes.stt.taxa(). This function further allows to simulate under epidemiological models with an exposed class. The function sim.genespeciestree() simulates coalescent gene trees within birth-death species trees, and sim.genetree() simulates coalescent gene trees.
This package provides a framework to work with decision rules. Rules can be extracted from supported models, augmented with (custom) metrics using validation data, manipulated using standard dataframe operations, reordered and pruned based on a metric, predict on unseen (test) data. Utilities include; Creating a rulelist manually, Exporting a rulelist as a SQL case statement and so on. The package offers two classes; rulelist and ruleset based on dataframe.