Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Functions, data sets, analyses and examples from the second edition of the book A Handbook of Statistical Analyses Using R (Brian S. Everitt and Torsten Hothorn, Chapman & Hall/CRC, 2008). The first chapter of the book, which is entitled An Introduction to R'', is completely included in this package, for all other chapters, a vignette containing all data analyses is available. In addition, the package contains Sweave code for producing slides for selected chapters (see HSAUR2/inst/slides).
Makes it easy to download a large number of files such as PDF files and CSV files, while automatically slowing down requests, letting you know where it is up to, and adjusting for files that have already been downloaded.
Consider the linear mixed model with normal random effects. A typical method to solve Henderson's Mixed Model Equations (HMME) is recursive estimation of the fixed effects and random effects. We provide a fast, stable, and scalable solver to the HMME without computing matrix inverse. See Kim (2017) <arXiv:1710.09663> for more details.
The seed germination process starts with water uptake by the seed and ends with the protrusion of radicle and plumule under varying temperatures and soil water potential. Hydrotime is a way to describe the relationship between water potential and seed germination rates at germination percentages. One important quantity before applying hydrotime modeling of germination percentages is to consider the proportion of viable seeds that could germinate under saturated conditions. This package can be used to apply correction factors at various water potentials before estimating parameters like stress tolerance, and uniformity of the hydrotime model. Three different distributions namely, Gaussian, Logistic, and Extreme value distributions have been considered to fit the model to the seed germination time course. Details can be found in Bradford (2002) <https://www.jstor.org/stable/4046371>, and Bradford and Still(2004) <https://www.jstor.org/stable/23433495>.
This package implements the Clarke-Wright algorithm to find a quasi-optimal solution to the Capacitated Vehicle Routing Problem. See Clarke, G. and Wright, J.R. (1964) <doi:10.1287/opre.12.4.568> for details. The implementation is accompanied by helper functions to inspect its solution.
This package implements the simpler and faster heat index, which matches the values of the original 1979 heat index and its 2022 extension for air temperatures above 300 K (27 C, 80 F) and with only minor differences at lower temperatures. Also implements an algorithm for calculating the thermodynamic (and psychrometric) wet-bulb (and ice-bulb) temperature.
This package creates and plots 2D and 3D hive plots. Hive plots are a unique method of displaying networks of many types in which node properties are mapped to axes using meaningful properties rather than being arbitrarily positioned. The hive plot concept was invented by Martin Krzywinski at the Genome Science Center (www.hiveplot.net/). Keywords: networks, food webs, linnet, systems biology, bioinformatics.
It is used to travel graphs, by using DFS and BFS to get the path from node to each leaf node. Depth first traversal(DFS) is a recursive algorithm for searching all the vertices of a graph or tree data structure. Traversal means visiting all the nodes of a graph. Breadth first traversal(BFS) algorithm is used to search a tree or graph data structure for a node that meets a set of criteria. It starts at the treeâ s root or graph and searches/visits all nodes at the current depth level before moving on to the nodes at the next depth level. Also, it provides the matrix which is reachable between each node. Implement reference about Baruch Awerbuch (1985) <doi:10.1016/0020-0190(85)90083-3>.
Published meta-analyses routinely present one of the measures of heterogeneity introduced in Higgins and Thompson (2002) <doi:10.1002/sim.1186>. For critiquing articles it is often better to convert to another of those measures. Some conversions are provided here and confidence intervals are also available.
The half-weight index gregariousness (HWIG) is an association index used in social network analyses. It extends the half-weight association index (HWI), correcting for level of gregariousness in individuals. It is calculated using group by individual data according to methods described in Godde et al. (2013) <doi:10.1016/j.anbehav.2012.12.010>.
Fits Hierarchical Bayesian space-Time models for Gaussian data. Furthermore, its functions have been implemented for analysing the fitting qualities of those models.
The Ljung-Box test is one of the most important tests for time series diagnostics and model selection. The Hassani SACF (Sum of the Sample Autocorrelation Function) Theorem , however, indicates that the sum of sample autocorrelation function is always fix for any stationary time series with arbitrary length. This package confirms for sensitivity of the Ljung-Box test to the number of lags involved in the test and therefore it should be used with extra caution. The Hassani SACF Theorem has been described in : Hassani, Yeganegi and M. R. (2019) <doi:10.1016/j.physa.2018.12.028>.
This package provides a suite of functions to ping URLs and to time HTTP requests'. Designed to work with httr'.
This package provides a collection of utilities that support creation of network attributes for hydrologic networks. Methods and algorithms implemented are documented in Moore et al. (2019) <doi:10.3133/ofr20191096>), Cormen and Leiserson (2022) <ISBN:9780262046305> and Verdin and Verdin (1999) <doi:10.1016/S0022-1694(99)00011-6>.
This package provides a two-step double-robust method to estimate the conditional average treatment effects (CATE) with potentially high-dimensional covariate(s). In the first stage, the nuisance functions necessary for identifying CATE are estimated by machine learning methods, allowing the number of covariates to be comparable to or larger than the sample size. The second stage consists of a low-dimensional local linear regression, reducing CATE to a function of the covariate(s) of interest. The CATE estimator implemented in this package not only allows for high-dimensional data, but also has the â double robustnessâ property: either the model for the propensity score or the models for the conditional means of the potential outcomes are allowed to be misspecified (but not both). This package is based on the paper by Fan et al., "Estimation of Conditional Average Treatment Effects With High-Dimensional Data" (2022), Journal of Business & Economic Statistics <doi:10.1080/07350015.2020.1811102>.
Simple tools for converting columns to new data types. Intuitive functions for columns with missing values.
The "Hit and Run" Markov Chain Monte Carlo method for sampling uniformly from convex shapes defined by linear constraints, and the "Shake and Bake" method for sampling from the boundary of such shapes. Includes specialized functions for sampling normalized weights with arbitrary linear constraints. Tervonen, T., van Valkenhoef, G., Basturk, N., and Postmus, D. (2012) <doi:10.1016/j.ejor.2012.08.026>. van Valkenhoef, G., Tervonen, T., and Postmus, D. (2014) <doi:10.1016/j.ejor.2014.06.036>.
Generates (half-)normal plots with simulation envelopes using different diagnostics from a range of different fitted models. A few example datasets are included.
Facilitates building topology preserving maps for data analysis.
Higher-order latent trait theory (item response theory). We implement the generalized partial credit model with a second-order latent trait structure. Latent regression can be done on the second-order latent trait. For a pre-print of the methods, see, "Latent Regression in Higher-Order Item Response Theory with the R Package hlt" <https://mkleinsa.github.io/doc/hlt_proof_draft_brmic.pdf>.
The HMS (Hierarchic Memetic Strategy) is a composite global optimization strategy consisting of a multi-population evolutionary strategy and some auxiliary methods. The HMS makes use of a dynamically-evolving data structure that provides an organization among the component populations. It is a tree with a fixed maximal height and variable internal node degree. Each component population is governed by a particular evolutionary engine. This package provides a simple R implementation with examples of using different genetic algorithms as the population engines. References: J. Sawicki, M. Å oÅ , M. SmoÅ ka, J. Alvarez-Aramberri (2022) <doi:10.1007/s11047-020-09836-w>.
Set of tools to help interested researchers to build hospital networks from data on hospitalized patients transferred between hospitals. Methods provided have been used in Donker T, Wallinga J, Grundmann H. (2010) <doi:10.1371/journal.pcbi.1000715>, and Nekkab N, Crépey P, Astagneau P, Opatowski L, Temime L. (2020) <doi:10.1038/s41598-020-71212-6>.
H3 is a hexagonal hierarchical spatial index developed by Uber <https://h3geo.org/>. This package exposes the source code of H3 (written in C') to routines that are callable through R'.
Structural handling of Finnish identity codes (natural persons and organizations); extract information, check ID validity and diagnostics.