Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We consider the ultrahigh-dimensional and error-prone data. Our goal aims to estimate the precision matrix and identify the graphical structure of the random variables with measurement error corrected. We further adopt the estimated precision matrix to the linear discriminant function to do classification for multi-label classes.
Symbolic calculation (addition or multiplication) and evaluation of multivariate polynomials with rational coefficients.
This package provides routines to estimate the Mixture Transition Distribution Model based on Raftery (1985) <http://www.jstor.org/stable/2345788> and Nicolau (2014) <doi:10.1111/sjos.12087> specifications, for multivariate data. Additionally, provides a function for the estimation of a new model for multivariate non-homogeneous Markov chains. This new specification, Generalized Multivariate Markov Chains (GMMC) was proposed by Carolina Vasconcelos and Bruno Damasio and considers (continuous or discrete) covariates exogenous to the Markov chain.
Datasets used in the book Graphical Data Analysis with R (Antony Unwin, CRC Press 2015).
Conducts hierarchical partitioning to calculate individual contributions of each predictor towards adjusted R2 and explained deviance for generalized additive models based on output of gam() and bam() in mgcv package, applying the algorithm in this paper: Lai(2024) <doi:10.1016/j.pld.2024.06.002>.
An R package that allows for combining tree-boosting with Gaussian process and mixed effects models. It also allows for independently doing tree-boosting as well as inference and prediction for Gaussian process and mixed effects models. See <https://github.com/fabsig/GPBoost> for more information on the software and Sigrist (2022, JMLR) <https://www.jmlr.org/papers/v23/20-322.html> and Sigrist (2023, TPAMI) <doi:10.1109/TPAMI.2022.3168152> for more information on the methodology.
This package provides functions for Gaussian and Non Gaussian (bivariate) spatial and spatio-temporal data analysis are provided for a) (fast) simulation of random fields, b) inference for random fields using standard likelihood and a likelihood approximation method called weighted composite likelihood based on pairs and b) prediction using (local) best linear unbiased prediction. Weighted composite likelihood can be very efficient for estimating massive datasets. Both regression and spatial (temporal) dependence analysis can be jointly performed. Flexible covariance models for spatial and spatial-temporal data on Euclidean domains and spheres are provided. There are also many useful functions for plotting and performing diagnostic analysis. Different non Gaussian random fields can be considered in the analysis. Among them, random fields with marginal distributions such as Skew-Gaussian, Student-t, Tukey-h, Sin-Arcsin, Two-piece, Weibull, Gamma, Log-Gaussian, Binomial, Negative Binomial and Poisson. See the URL for the papers associated with this package, as for instance, Bevilacqua and Gaetan (2015) <doi:10.1007/s11222-014-9460-6>, Bevilacqua et al. (2016) <doi:10.1007/s13253-016-0256-3>, Vallejos et al. (2020) <doi:10.1007/978-3-030-56681-4>, Bevilacqua et. al (2020) <doi:10.1002/env.2632>, Bevilacqua et. al (2021) <doi:10.1111/sjos.12447>, Bevilacqua et al. (2022) <doi:10.1016/j.jmva.2022.104949>, Morales-Navarrete et al. (2023) <doi:10.1080/01621459.2022.2140053>, and a large class of examples and tutorials.
Set of routines for making map projections (forward and inverse), topographic maps, perspective plots, geological maps, geological map symbols, geological databases, interactive plotting and selection of focus regions.
This package provides tools for efficient processing of large, whole genome genotype data sets in variant call format (VCF). It includes several functions to calculate commonly used population genomic metrics and a method for reference panel free genotype imputation, which is described in the preprint Gurke & Mayer (2024) <doi:10.22541/au.172515591.10119928/v1>.
Geostatistical analysis including variogram-based, likelihood-based and Bayesian methods. Software companion for Diggle and Ribeiro (2007) <doi:10.1007/978-0-387-48536-2>.
Using simple input, this package creates plots of gene models. Users can create plots of alternatively spliced gene variants and the positions of mutations and other gene features.
This package provides a ggplot2 extension that adds specialised arrow geometry layers. It offers more arrow options than the standard grid arrows that are built-in many line-based geom layers.
This package provides a model building procedure to build parsimonious geoadditive model from a large number of covariates. Continuous, binary and ordered categorical responses are supported. The model building is based on component wise gradient boosting with linear effects, smoothing splines and a smooth spatial surface to model spatial autocorrelation. The resulting covariate set after gradient boosting is further reduced through backward elimination and aggregation of factor levels. The package provides a model based bootstrap method to simulate prediction intervals for point predictions. A test data set of a soil mapping case study in Berne (Switzerland) is provided. Nussbaum, M., Walthert, L., Fraefel, M., Greiner, L., and Papritz, A. (2017) <doi:10.5194/soil-3-191-2017>.
Some methods for the inference and clustering of univariate and multivariate functional data, using a generalization of Mahalanobis distance, along with some functions useful for the analysis of functional data. For further details, see Martino A., Ghiglietti, A., Ieva, F. and Paganoni A. M. (2017) <arXiv:1708.00386>.
This package provides functions to analyze data exported from Google Takeout'. The package supports unzipping archives and extracting user review data from Google Business Profile exports into tidy data frames for further analysis.
Read, manipulate, and digitize landmark data, generate shape variables via Procrustes analysis for points, curves and surfaces, perform shape analyses, and provide graphical depictions of shapes and patterns of shape variation.
This package provides a Humanitarian Data Exchange (HDX) theme, color palettes, and scales for ggplot2 to allow users to easily follow the HDX visual design guide, including convenience functions for for loading and using the Source Sans 3 font.
Simplifies the creation, management, and updating of local databases using data extracted from Google Earth Engine ('GEE'). It integrates with GEE to store, aggregate, and process spatio-temporal data, leveraging SQLite for efficient, serverless storage. The geeLite package provides utilities for data transformation and supports real-time monitoring and analysis of geospatial features, making it suitable for researchers and practitioners in geospatial science. For details, see Kurbucz and Andrée (2025) "Building and Managing Local Databases from Google Earth Engine with the geeLite R Package" <https://hdl.handle.net/10986/43165>.
Several Goodness-of-Fit (GoF) tests for Copulae are provided. A new hybrid test, Zhang et al. (2016) <doi:10.1016/j.jeconom.2016.02.017> is implemented which supports all of the individual tests in the package, e.g. Genest et al. (2009) <doi:10.1016/j.insmatheco.2007.10.005>. Estimation methods for the margins are provided and all the tests support parameter estimation and predefined values. The parameters are estimated by pseudo maximum likelihood but if it fails the estimation switches automatically to inversion of Kendall's tau. For reproducibility of results, the functions support the definition of seeds. Also all the tests support automatized parallelization of the bootstrapping tasks. The package provides an interface to perform new GoF tests by submitting the test statistic.
Generating, evaluating, and selecting initialization strategies for Gaussian Mixture Models (GMMs), along with functions to run the Expectation-Maximization (EM) algorithm. Initialization methods are compared using log-likelihood, and the best-fitting model can be selected using BIC. Methods build on initialization strategies for finite mixture models described in Michael and Melnykov (2016) <doi:10.1007/s11634-016-0264-8> and Biernacki et al. (2003) <doi:10.1016/S0167-9473(02)00163-9>, and on the EM algorithm of Dempster et al. (1977) <doi:10.1111/j.2517-6161.1977.tb01600.x>. Background on model-based clustering includes Fraley and Raftery (2002) <doi:10.1198/016214502760047131> and McLachlan and Peel (2000, ISBN:9780471006268).
Simple package to download Google Sheets using just the sharing link. Spreadsheets can be downloaded as a data frame, or as plain text to parse manually. Google Sheets is the new name for Google Docs Spreadsheets <https://www.google.com/sheets/about>.
Geographical detectors for measuring spatial stratified heterogeneity, as described in Jinfeng Wang (2010) <doi:10.1080/13658810802443457> and Jinfeng Wang (2016) <doi:10.1016/j.ecolind.2016.02.052>. Includes the optimal discretization of continuous data, four primary functions of geographical detectors, comparison of size effects of spatial unit and the visualizations of results. To use the package and to refer the descriptions of the package, methods and case datasets, please cite Yongze Song (2020) <doi:10.1080/15481603.2020.1760434>. The model has been applied in factor exploration of road performance and multi-scale spatial segmentation for network data, as described in Yongze Song (2018) <doi:10.3390/rs10111696> and Yongze Song (2020) <doi:10.1109/TITS.2020.3001193>, respectively.
You can use this function to easily draw a combined histogram and restricted cubic spline. The function draws the graph through ggplot2'. RCS fitting requires the use of the rcs() function of the rms package. Can fit cox regression, logistic regression. This method was described by Per Kragh (2003) <doi:10.1002/sim.1497>.
Implementation of the Generalized Score Matching estimator in Yu et al. (2019) <https://jmlr.org/papers/v20/18-278.html> for non-negative graphical models (truncated Gaussian, exponential square-root, gamma, a-b models) and univariate truncated Gaussian distributions. Also includes the original estimator for untruncated Gaussian graphical models from Lin et al. (2016) <doi:10.1214/16-EJS1126>, with the addition of a diagonal multiplier.