Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Use the US Census API to collect summary data tables for SF1 and ACS datasets at arbitrary geographies.
This package provides an R interface to the Copernicus Marine Service for downloading and accessing marine data. Integrates with the official copernicusmarine Python library through reticulate'. Requires Python 3.7+ and a free Copernicus Marine account. See <https://marine.copernicus.eu/> and <https://pypi.org/project/copernicusmarine/> for more information.
Manages comparison of MCMC performance metrics from multiple MCMC algorithms. These may come from different MCMC configurations using the nimble package or from other packages. Plug-ins for JAGS via rjags and Stan via rstan are provided. It is possible to write plug-ins for other packages. Performance metrics are held in an MCMCresult class along with samples and timing data. It is easy to apply new performance metrics. Reports are generated as html pages with figures comparing sets of runs. It is possible to configure the html pages, including providing new figure components.
Uses the CMS application programming interface <https://dnav.cms.gov/api/healthdata> to provide users databases containing yearly Medicare reimbursement rates in the United States. Data can be acquired for the entire United States or only for specific localities. Currently, support is only provided for the Medicare Physician Fee Schedule, but support will be expanded for other CMS databases in future versions.
Extension of cmprsk to Stratified and Clustered data. A goodness of fit test for Fine-Gray model is also provided. Methods are detailed in the following articles: Zhou et al. (2011) <doi:10.1111/j.1541-0420.2010.01493.x>, Zhou et al. (2012) <doi:10.1093/biostatistics/kxr032>, Zhou et al. (2013) <doi: 10.1002/sim.5815>.
Clustering, or cluster analysis, is a widely used technique in bioinformatics to identify groups of similar biological data points. Consensus clustering is an extension to clustering algorithms that aims to construct a robust result from those clustering features that are invariant under different sources of variation. For the reference, please cite the following paper: Yousefi, Melograna, et. al., (2023) <doi:10.3389/fmicb.2023.1170391>.
This package provides a generic, easy-to-use and expandable implementation of a pharmacokinetic (PK) / pharmacodynamic (PD) model based on the S4 class system. This package allows the user to read and write pharmacometric models from and to files, including a JSON-based interface to import Campsis models defined using a formal JSON schema distributed with the package. Models can be adapted further on the fly in the R environment using an intuitive API to add, modify or delete equations, ordinary differential equations (ODEs), model parameters or compartment properties (such as infusion duration or rate, bioavailability and initial values). The package also provides export facilities for use with the simulation packages â rxode2â and â mrgsolveâ . The package itself is licensed under the GPL (>= 3); the JSON schema file shipped in inst/extdata is licensed separately under the Creative Commons Attribution 4.0 International (CC BY 4.0). This package is designed and intended to be used with the package â campsisâ , a PK/PD simulation platform built on top of â rxode2â and â mrgsolveâ .
This package provides a spatially-aware cell clustering algorithm is provided with cluster significance assessment. It comprises four key modules: spatially-aware cell-gene co-embedding, cell clustering, signature gene identification, and cluster significant assessment. More details can be referred to Peng Xie, et al. (2025) <doi:10.1016/j.cell.2025.05.035>.
Offers tools to estimate the climate representativeness of reference polygons and quantifies its transformation under future climate change scenarios. Approaches described in Mingarro and Lobo (2018) <doi:10.32800/abc.2018.41.0333> and Mingarro and Lobo (2022) <doi:10.1017/S037689292100014X>.
Randomization-Based Inference for customized experiments. Computes Fisher-Exact P-Values alongside null randomization distributions. Retrieves counternull sets and generates counternull distributions. Computes Fisher Intervals and Fisher-Adjusted P-Values. Package includes visualization of randomization distributions and Fisher Intervals. Users can input custom test statistics and their own methods for randomization. Rosenthal and Rubin (1994) <doi:10.1111/j.1467-9280.1994.tb00281.x>.
Automated and robust framework for analyzing R-R interval (RRi) signals using advanced nonlinear modeling and preprocessing techniques. The package implements a dual-logistic model to capture the rapid drop and subsequent recovery of RRi during exercise, as described by Castillo-Aguilar et al. (2025) <doi:10.1038/s41598-025-93654-6>. In addition, CardioCurveR includes tools for filtering RRi signals using zero-phase Butterworth low-pass filtering and for cleaning ectopic beats via adaptive outlier replacement using local regression and robust statistics. These integrated methods preserve the dynamic features of RRi signals and facilitate accurate cardiovascular monitoring and clinical research.
This package contains functions to detect and visualise periods of climate sensitivity (climate windows) for a given biological response. Please see van de Pol et al. (2016) <doi:10.1111/2041-210X.12590> and Bailey and van de Pol (2016) <doi:10.1371/journal.pone.0167980> for details.
This package provides functions to check whether a vector of p-values respects the assumptions of FDR (false discovery rate) control procedures and to compute adjusted p-values.
This package provides tools for storing and managing competition results. Competition is understood as a set of games in which players gain some abstract scores. There are two ways for storing results: in long (one row per game-player) and wide (one row per game with fixed amount of players) formats. This package provides functions for creation and conversion between them. Also there are functions for computing their summary and Head-to-Head values for players. They leverage grammar of data manipulation from dplyr'.
Hansen's (1995) Covariate-Augmented Dickey-Fuller (CADF) test. The only required argument is y, the Tx1 time series to be tested. If no stationary covariate X is passed to the procedure, then an ordinary ADF test is performed. The p-values of the test are computed using the procedure illustrated in Lupi (2009).
Conditional graphical lasso estimator is an extension of the graphical lasso proposed to estimate the conditional dependence structure of a set of p response variables given q predictors. This package provides suitable extensions developed to study datasets with censored and/or missing values. Standard conditional graphical lasso is available as a special case. Furthermore, the package provides an integrated set of core routines for visualization, analysis, and simulation of datasets with censored and/or missing values drawn from a Gaussian graphical model. Details about the implemented models can be found in Augugliaro et al. (2023) <doi: 10.18637/jss.v105.i01>, Augugliaro et al. (2020b) <doi: 10.1007/s11222-020-09945-7>, Augugliaro et al. (2020a) <doi: 10.1093/biostatistics/kxy043>, Yin et al. (2001) <doi: 10.1214/11-AOAS494> and Stadler et al. (2012) <doi: 10.1007/s11222-010-9219-7>.
Calculate the likelihood ratio test p-value and likelihood confidence intervals for misspecified Cox models, as described in Shao and Guo (2025) <doi:10.48550/arXiv.2508.11851>.
Utilize the shiny interface for visualizing results from a pyDarwin (<https://certara.github.io/pyDarwin/>) machine learning pharmacometric model search. It generates Goodness-of-Fit plots and summary tables for selected models, allowing users to customize diagnostic outputs within the interface. The underlying R code for generating plots and tables can be extracted for use outside the interactive session. Model diagnostics can also be incorporated into an R Markdown document and rendered in various output formats.
Downloads USDA National Agricultural Statistics Service (NASS) cropscape data for a specified state. Utilities for fips, abbreviation, and name conversion are also provided. Full functionality requires an internet connection, but data sets can be cached for later off-line use.
An interactive document on the topic of confusion matrix analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://predanalyticssessions1.shinyapps.io/ConfusionMatrixShiny/>.
Robust regression methods for compositional data. The distribution of the estimates can be approximated with various bootstrap methods. These bootstrap methods are available for the compositional as well as for standard robust regression estimates. This allows for direct comparison between them.
Plots the coefficients from model objects. This very quickly shows the user the point estimates and confidence intervals for fitted models.
This package provides functions for clustering regions that form convergence clubs, according to the definition of Phillips and Sul (2009) <doi:10.1002/jae.1080>. A package description is available in Sichera and Pizzuto (2019).
The cystiSim package provides an agent-based model for Taenia solium transmission and control. cystiSim was developed within the framework of CYSTINET, the European Network on taeniosis/cysticercosis, COST ACTION TD1302.