Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generate a candidate code list for the Observational Medical Outcomes Partnership (OMOP) common data model based on string matching. For a given search strategy, a candidate code list will be returned.
Evaluation for density and distribution function of convolution of gamma distributions in R. Two related exact methods and one approximate method are implemented with efficient algorithm and C++ code. A quick guide for choosing correct method and usage of this package is given in package vignette. For the detail of methods used in this package, we refer the user to Mathai(1982)<doi:10.1007/BF02481056>, Moschopoulos(1984)<doi:10.1007/BF02481123>, Barnabani(2017)<doi:10.1080/03610918.2014.963612>, Hu et al.(2020)<doi:10.1007/s00180-019-00924-9>.
Check digits are used like file hashes to verify that a number has been transcribed accurately. The functions provided by this package help to calculate and verify check digits according to various algorithms.
This package provides a self-contained set of methods to aid clinical trial safety investigators, statisticians and researchers, in the early detection of adverse events using groupings by body-system or system organ class. This work was supported by the Engineering and Physical Sciences Research Council (UK) (EPSRC) [award reference 1521741] and Frontier Science (Scotland) Ltd. The package title c212 is in reference to the original Engineering and Physical Sciences Research Council (UK) funded project which was named CASE 2/12.
Providing data to quickly visualize and analyze data from several cryptocurrencies.
Automatic specification and estimation of reserve demand curves for central bank operations. The package can help to choose the best demand curve and identify additional explanatory variables. Various plot and predict options are included. For more details, see Chen et al. (2023) <https://www.imf.org/en/Publications/WP/Issues/2023/09/01/Modeling-the-Reserve-Demand-to-Facilitate-Central-Bank-Operations-538754>.
Compile inline C code and easily call with automatically generated wrapper functions. By allowing user-defined headers and compilation flags (preprocessor, compiler and linking flags) the user can configure optimization options and linking to third party libraries. Multiple functions may be defined in a single block of code - which may be defined in a string or a path to a source file.
This package provides a comprehensive framework for batch effect diagnostics, harmonization, and post-harmonization downstream analysis. Features include interactive visualization tools, robust statistical tests, and a range of harmonization techniques. Additionally, ComBatFamQC enables the creation of life-span age trend plots with estimated age-adjusted centiles and facilitates the generation of covariate-corrected residuals for analytical purposes. Methods for harmonization are based on approaches described in Johnson et al., (2007) <doi:10.1093/biostatistics/kxj037>, Beer et al., (2020) <doi:10.1016/j.neuroimage.2020.117129>, Pomponio et al., (2020) <doi:10.1016/j.neuroimage.2019.116450>, and Chen et al., (2021) <doi:10.1002/hbm.25688>.
Computes 138 standard climate indices at monthly, seasonal and annual resolution. These indices were selected, based on their direct and significant impacts on target sectors, after a thorough review of the literature in the field of extreme weather events and natural hazards. Overall, the selected indices characterize different aspects of the frequency, intensity and duration of extreme events, and are derived from a broad set of climatic variables, including surface air temperature, precipitation, relative humidity, wind speed, cloudiness, solar radiation, and snow cover. The 138 indices have been classified as follow: Temperature based indices (42), Precipitation based indices (22), Bioclimatic indices (21), Wind-based indices (5), Aridity/ continentality indices (10), Snow-based indices (13), Cloud/radiation based indices (6), Drought indices (8), Fire indices (5), Tourism indices (5).
Linear or nonlinear cross-lagged panel model can be built from input data. Users can choose the appropriate method from three methods for constructing nonlinear cross lagged models. These three methods include polynomial regression, generalized additive model and generalized linear mixed model.In addition, a function for determining linear relationships is provided. Relevant knowledge of cross lagged models can be learned through the paper by Fredrik Falkenström (2024) <doi:10.1016/j.cpr.2024.102435> and the paper by A Gasparrini (2010) <doi:10.1002/sim.3940>.
Package for CShapes 2.0, a GIS dataset of country borders (1886-today). Includes functions for data extraction and the computation of distance matrices and -lists.
Flexible framework for coalescent analyses in R. It includes a main function running the MCMC algorithm, auxiliary functions for tree rearrangement, and some functions to compute population genetic parameters. Extended description can be found in Paradis (2020) <doi:10.1201/9780429466700>. For details on the MCMC algorithm, see Kuhner et al. (1995) <doi:10.1093/genetics/140.4.1421> and Drummond et al. (2002) <doi:10.1093/genetics/161.3.1307>.
This package implements a methodology for using cell volume distributions to estimate cell growth rates and division times that is described in the paper, "Cell Volume Distributions Reveal Cell Growth Rates and Division Times", by Michael Halter, John T. Elliott, Joseph B. Hubbard, Alessandro Tona and Anne L. Plant, which appeared in the Journal of Theoretical Biology. In order to reproduce the analysis used to obtain Table 1 in the paper, execute the command "example(fitVolDist)".
This package provides tools for interacting with the Circle CI API (<https://circleci.com/docs/api/v2/>). Besides executing common tasks such as querying build logs and restarting builds, this package also helps setting up permissions to deploy from builds.
An investigative tool designed to help users visualize correlations between variables in their datasets. This package aims to provide an easy and effective way to explore and visualize these correlations, making it easier to interpret and communicate results.
Searches for, accesses, and retrieves Statistics Canada data tables, as well as individual vectors, as tidy data frames. This package enriches the tables with metadata, deals with encoding issues, allows for bilingual English or French language data retrieval, and bundles convenience functions to make it easier to work with retrieved table data. For more efficient data access the package allows for caching data in a local database and database level filtering, data manipulation and summarizing.
This package provides functions supporting the common needs of packages ChemoSpec and ChemoSpec2D'.
This package provides a candidate correspondence table between two classifications can be created when there are correspondence tables leading from the first classification to the second one via intermediate pivot classifications. The correspondence table between two statistical classifications can be updated when one of the classifications gets updated to a new version.
The Cauchy Process can model pulsed continuous trait evolution on phylogenies. The likelihood is tractable, and is used for parameter inference and ancestral trait reconstruction. See Bastide and Didier (2023) <doi:10.1093/sysbio/syad053>.
Correlates of protection (CoP) and correlates of risk (CoR) study the immune biomarkers associated with an infectious disease outcome, e.g. COVID or HIV-1 infection. This package contains shared functions for analyzing CoP and CoR, including bootstrapping procedures, competing risk estimation, and bootstrapping marginalized risks.
The theory of cooperative games with transferable utility offers useful insights into the way parties can share gains from cooperation and secure sustainable agreements, see e.g. one of the books by Chakravarty, Mitra and Sarkar (2015, ISBN:978-1107058798) or by Driessen (1988, ISBN:978-9027727299) for more details. A comprehensive set of tools for cooperative game theory with transferable utility is provided. Users can create special families of cooperative games, like e.g. bankruptcy games, cost sharing games and weighted voting games. There are functions to check various game properties and to compute five different set-valued solution concepts for cooperative games. A large number of point-valued solution concepts is available reflecting the diverse application areas of cooperative game theory. Some of these point-valued solution concepts can be used to analyze weighted voting games and measure the influence of individual voters within a voting body. There are routines for visualizing both set-valued and point-valued solutions in the case of three or four players.
Fit flexible and fully parametric hazard regression models to survival data with single event type or multiple competing causes via logistic and multinomial regression. Our formulation allows for arbitrary functional forms of time and its interactions with other predictors for time-dependent hazards and hazard ratios. From the fitted hazard model, we provide functions to readily calculate and plot cumulative incidence and survival curves for a given covariate profile. This approach accommodates any log-linear hazard function of prognostic time, treatment, and covariates, and readily allows for non-proportionality. We also provide a plot method for visualizing incidence density via population time plots. Based on the case-base sampling approach of Hanley and Miettinen (2009) <DOI:10.2202/1557-4679.1125>, Saarela and Arjas (2015) <DOI:10.1111/sjos.12125>, and Saarela (2015) <DOI:10.1007/s10985-015-9352-x>.
Create simplex plots to visualize the similarity between single-cells and selected clusters in a 1-/2-/3-simplex space. Velocity information can be added as an additional layer. See Liu J, Wang Y et al (2023) <doi:10.1093/bioinformatics/btaf119> for more details.
Features tools for exploring congruent phylogenetic birth-death models. It can construct the pulled speciation- and net-diversification rates from a reference model. Given alternative speciation- or extinction rates, it can construct new models that are congruent with the reference model. Functionality is included to sample new rate functions, and to visualize the distribution of one congruence class. See also Louca & Pennell (2020) <doi:10.1038/s41586-020-2176-1>.