Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Get z-scores, percentiles, absolute values, and percent of predicted of a reference cohort. Functionality requires installing the data packages adiposerefdata and musclerefdata'. For more information on the underlying research, please visit our website which also includes a graphical interface. The models and underlying data are described in Marquardt JP et al.(planned publication 2025; reserved doi 10.1097/RLI.0000000000001104), "Subcutaneous and Visceral adipose tissue Reference Values from Framingham Heart Study Thoracic and Abdominal CT", *Investigative Radiology* and Tonnesen PE et al. (2023), "Muscle Reference Values from Thoracic and Abdominal CT for Sarcopenia Assessment [column] The Framingham Heart Study", *Investigative Radiology*, <doi:10.1097/RLI.0000000000001012>.
This package implements Bayesian marginal structural models for causal effect estimation with time-varying treatment and confounding. It includes an extension to handle informative right censoring. The Bayesian importance sampling weights are estimated using JAGS. See Saarela (2015) <doi:10.1111/biom.12269> for methodological details.
Toolkit for Bayesian estimation of the dependence structure in multivariate extreme value parametric models, following Sabourin and Naveau (2014) <doi:10.1016/j.csda.2013.04.021> and Sabourin, Naveau and Fougeres (2013) <doi:10.1007/s10687-012-0163-0>.
Call the data wrappers for Bursa Metropolitan Municipality's Open Data Portal <https://acikyesil.bursa.bel.tr/>. This will return all datasets stored in different formats.
Calculates a range of UK freshwater invertebrate biotic indices including BMWP, Whalley, WHPT, Habitat-specific BMWP, AWIC, LIFE and PSI.
Algorithms for computing and generating plots with and without error bars for Bayesian cluster validity index (BCVI) (O. Preedasawakul, and N. Wiroonsri, A Bayesian Cluster Validity Index, Computational Statistics & Data Analysis, 202, 108053, 2025. <doi:10.1016/j.csda.2024.108053>) based on several underlying cluster validity indexes (CVIs) including Calinski-Harabasz, Chou-Su-Lai, Davies-Bouldin, Dunn, Pakhira-Bandyopadhyay-Maulik, Point biserial correlation, the score function, Starczewski, and Wiroonsri indices for hard clustering, and Correlation Cluster Validity, the generalized C, HF, KWON, KWON2, Modified Pakhira-Bandyopadhyay-Maulik, Pakhira-Bandyopadhyay-Maulik, Tang, Wiroonsri-Preedasawakul, Wu-Li, and Xie-Beni indices for soft clustering. The package is compatible with K-means, fuzzy C means, EM clustering, and hierarchical clustering (single, average, and complete linkage). Though BCVI is compatible with any underlying existing CVIs, we recommend users to use either WI or WP as the underlying CVI.
Offers a flexible formula-based interface for building and training Bayesian Neural Networks powered by Stan'. The package supports modeling complex relationships while providing rigorous uncertainty quantification via posterior distributions. With features like user chosen priors, clear predictions, and support for regression, binary, and multi-class classification, it is well-suited for applications in clinical trials, finance, and other fields requiring robust Bayesian inference and decision-making. References: Neal(1996) <doi:10.1007/978-1-4612-0745-0>.
Generate urls and hyperlinks to commonly used biological databases and resources based on standard identifiers. This is primarily useful when writing dynamic reports that reference things like gene symbols in text or tables, allowing you to, for example, convert gene identifiers to hyperlinks pointing to their entry in the NCBI Gene database. Currently supports NCBI Gene, PubMed', Gene Ontology, KEGG', CRAN and Bioconductor.
Implementation of BayesFlux.jl for R; It extends the famous Flux.jl machine learning library to Bayesian Neural Networks. The goal is not to have the fastest production ready library, but rather to allow more people to be able to use and research on Bayesian Neural Networks.
Package providing a number of functions for working with Two- and Four-parameter Beta and closely related distributions (i.e., the Gamma- Binomial-, and Beta-Binomial distributions). Includes, among other things: - d/p/q/r functions for Four-Parameter Beta distributions and Generalized "Binomial" (continuous) distributions, and d/p/r- functions for Beta- Binomial distributions. - d/p/q/r functions for Two- and Four-Parameter Beta distributions parameterized in terms of their means and variances rather than their shape-parameters. - Moment generating functions for Binomial distributions, Beta-Binomial distributions, and observed value distributions. - Functions for estimating classification accuracy and consistency, making use of the Classical Test-Theory based Livingston and Lewis (L&L) and Hanson and Brennan approaches. A shiny app is available, providing a GUI for the L&L approach when used for binary classifications. For url to the app, see documentation for the LL.CA() function. Livingston and Lewis (1995) <doi:10.1111/j.1745-3984.1995.tb00462.x>. Lord (1965) <doi:10.1007/BF02289490>. Hanson (1991) <https://files.eric.ed.gov/fulltext/ED344945.pdf>.
The blocked weighted bootstrap (BBW) is an estimation technique for use with data from two-stage cluster sampled surveys in which either prior weighting (e.g. population-proportional sampling or PPS as used in Standardized Monitoring and Assessment of Relief and Transitions or SMART surveys) or posterior weighting (e.g. as used in rapid assessment method or RAM and simple spatial sampling method or S3M surveys) is implemented. See Cameron et al (2008) <doi:10.1162/rest.90.3.414> for application of bootstrap to cluster samples. See Aaron et al (2016) <doi:10.1371/journal.pone.0163176> and Aaron et al (2016) <doi:10.1371/journal.pone.0162462> for application of the blocked weighted bootstrap to estimate indicators from two-stage cluster sampled surveys.
Bayesian dynamic borrowing with covariate adjustment via inverse probability weighting for simulations and data analyses in clinical trials. This makes it easy to use propensity score methods to balance covariate distributions between external and internal data. This methodology based on Psioda et al (2025) <doi:10.1080/10543406.2025.2489285>.
Allows the estimation and prediction for binary Gaussian process model. The mean function can be assumed to have time-series structure. The estimation methods for the unknown parameters are based on penalized quasi-likelihood/penalized quasi-partial likelihood and restricted maximum likelihood. The predicted probability and its confidence interval are computed by Metropolis-Hastings algorithm. More details can be seen in Sung et al (2017) <arXiv:1705.02511>.
This package provides an alternative approach to aoristic analyses for archaeological datasets by fitting Bayesian parametric growth models and non-parametric random-walk Intrinsic Conditional Autoregressive (ICAR) models on time frequency data (Crema (2024)<doi:10.1111/arcm.12984>). It handles event typo-chronology based timespans defined by start/end date as well as more complex user-provided vector of probabilities.
Fits Bayesian nonlinear Ornstein-Uhlenbeck models with cubic drift, stochastic volatility, and Student-t innovations. The package implements hierarchical priors for sector-specific parameters and supports parallel MCMC sampling via Stan'. Model comparison is performed using Pareto Smoothed Importance Sampling Leave-One-Out (PSIS-LOO) cross-validation following Vehtari, Gelman, and Gabry (2017) <doi:10.1007/s11222-016-9696-4>. Prior specifications follow recommendations from Gelman (2006) <doi:10.1214/06-BA117A> for scale parameters.
The Autoregressive Integrated Moving Average (ARIMA) model is very popular univariate time series model. Its application has been widened by the incorporation of exogenous variable(s) (X) in the model and modified as ARIMAX by Bierens (1987) <doi:10.1016/0304-4076(87)90086-8>. In this package we estimate the ARIMAX model using Bayesian framework.
Distributes Gaussian process calculations across nodes in a distributed memory setting, using Rmpi. The bigGP class provides high-level methods for maximum likelihood with normal data, prediction, calculation of uncertainty (i.e., posterior covariance calculations), and simulation of realizations. In addition, bigGP provides an API for basic matrix calculations with distributed covariance matrices, including Cholesky decomposition, back/forwardsolve, crossproduct, and matrix multiplication.
Creating spatially or environmentally separated folds for cross-validation to provide a robust error estimation in spatially structured environments; Investigating and visualising the effective range of spatial autocorrelation in continuous raster covariates and point samples to find an initial realistic distance band to separate training and testing datasets spatially described in Valavi, R. et al. (2019) <doi:10.1111/2041-210X.13107>.
These are miscellaneous functions for working with panel data, quantiles, and printing results. For panel data, the package includes functions for making a panel data balanced (that is, dropping missing individuals that have missing observations in any time period), converting id numbers to row numbers, and to treat repeated cross sections as panel data under the assumption of rank invariance. For quantiles, there are functions to make distribution functions from a set of data points (this is particularly useful when a distribution function is created in several steps), to combine distribution functions based on some external weights, and to invert distribution functions. Finally, there are several other miscellaneous functions for obtaining weighted means, weighted distribution functions, and weighted quantiles; to generate summary statistics and their differences for two groups; and to add or drop covariates from formulas.
Bayesian estimation of dynamic conditional correlation GARCH model for multivariate time series volatility (Fioruci, J.A., Ehlers, R.S. and Andrade-Filho, M.G., (2014). <doi:10.1080/02664763.2013.839635>.
This package provides functions and data sets reproducing some examples in Box, Hunter and Hunter II. Useful for statistical design of experiments, especially factorial experiments.
It brings together several aspects of biodiversity data-cleaning in one place. bdc is organized in thematic modules related to different biodiversity dimensions, including 1) Merge datasets: standardization and integration of different datasets; 2) pre-filter: flagging and removal of invalid or non-interpretable information, followed by data amendments; 3) taxonomy: cleaning, parsing, and harmonization of scientific names from several taxonomic groups against taxonomic databases locally stored through the application of exact and partial matching algorithms; 4) space: flagging of erroneous, suspect, and low-precision geographic coordinates; and 5) time: flagging and, whenever possible, correction of inconsistent collection date. In addition, it contains features to visualize, document, and report data quality รข which is essential for making data quality assessment transparent and reproducible. The reference for the methodology is Ribeiro and colleagues (2022) <doi:10.1111/2041-210X.13868>.
The main function generateDataset() processes a user-supplied .R file that contains metadata parameters in order to generate actual data. The metadata parameters have to be structured in the form of metadata objects, the format of which is outlined in the package vignette. This approach allows to generate artificial data in a transparent and reproducible manner.
Implementation of default Bayes factors for testing statistical hypotheses under various statistical models. The package is intended for applied quantitative researchers in the social and behavioral sciences, medical research, and related fields. The Bayes factor tests can be executed for statistical models such as univariate and multivariate normal linear models, correlation analysis, generalized linear models, special cases of linear mixed models, survival models, relational event models. Parameters that can be tested are location parameters (e.g., group means, regression coefficients), variances (e.g., group variances), and measures of association (e.g,. polychoric/polyserial/biserial/tetrachoric/product moments correlations), among others. The statistical underpinnings are described in O'Hagan (1995) <DOI:10.1111/j.2517-6161.1995.tb02017.x>, De Santis and Spezzaferri (2001) <DOI:10.1016/S0378-3758(00)00240-8>, Mulder and Xin (2022) <DOI:10.1080/00273171.2021.1904809>, Mulder and Gelissen (2019) <DOI:10.1080/02664763.2021.1992360>, Mulder (2016) <DOI:10.1016/j.jmp.2014.09.004>, Mulder and Fox (2019) <DOI:10.1214/18-BA1115>, Mulder and Fox (2013) <DOI:10.1007/s11222-011-9295-3>, Boeing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017) <DOI:10.1037/met0000116>, Hoijtink, Mulder, van Lissa, and Gu (2018) <DOI:10.1037/met0000201>, Gu, Mulder, and Hoijtink (2018) <DOI:10.1111/bmsp.12110>, Hoijtink, Gu, and Mulder (2018) <DOI:10.1111/bmsp.12145>, and Hoijtink, Gu, Mulder, and Rosseel (2018) <DOI:10.1037/met0000187>. When using the packages, please refer to the package Mulder et al. (2021) <DOI:10.18637/jss.v100.i18> and the relevant methodological papers.