Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides core computational operations in C++ via RcppArmadillo', enabling faster performance than pure R, improved numerical stability, and parallel execution with OpenMP where available. On systems without OpenMP support, the package automatically falls back to single-threaded execution with no user configuration required. For efficient model selection, it integrates with CVST to provide sequential-testing cross-validation that identifies competitive hyperparameters without exhaustive grid search. The package offers a unified interface for exact kernel ridge regression and three scalable approximationsâ Nyström, Pivoted Cholesky, and Random Fourier Featuresâ allowing analyses with substantially larger sample sizes than are feasible with exact KRR. It also integrates with the tidymodels ecosystem via the parsnip model specification krr_reg', and the S3 method tunable.krr_reg(). To understand the theoretical background, one can refer to Wainwright (2019) <doi:10.1017/9781108627771>.
Flow of funds are financial accounts that are provided by Federal Reserve quarterly. The package contains all datasets <https://www.federalreserve.gov/datadownload/Choose.aspx?rel=z1>, tables <https://www.federalreserve.gov/apps/fof/FOFTables.aspx> and descriptions <https://www.federalreserve.gov/apps/fof/Guide/z1_tables_description.pdf> with functions to understand series <https://www.federalreserve.gov/apps/fof/SeriesStructure.aspx> and explore them.
This package implements a novel approach for measuring feature importance in k-means clustering. Importance of a feature is measured by the misclassification rate relative to the baseline cluster assignment due to a random permutation of feature values. An explanation of permutation feature importance in general can be found here: <https://christophm.github.io/interpretable-ml-book/feature-importance.html>.
Optimal experimental designs for functional linear and functional generalised linear models, for scalar responses and profile/dynamic factors. The designs are optimised using the coordinate exchange algorithm. The methods are discussed by Michaelides (2023) <https://eprints.soton.ac.uk/474982/1/Thesis_DamianosMichaelides_Final_pdfa_1_.pdf>.
Original idea was presented in the reference paper. Varghese et al. (2020, 74(1):35-42) "Bayesian State-space Implementation of Schaefer Production Model for Assessment of Stock Status for Multi-gear Fishery". Marine fisheries governance and management practices are very essential to ensure the sustainability of the marine resources. A widely accepted resource management strategy towards this is to derive sustainable fish harvest levels based on the status of marine fish stock. Various fish stock assessment models that describe the biomass dynamics using time series data on fish catch and fishing effort are generally used for this purpose. In the scenario of complex multi-species marine fishery in which different species are caught by a number of fishing gears and each gear harvests a number of species make it difficult to obtain the fishing effort corresponding to each fish species. Since the capacity of the gears varies, the effort made to catch a resource cannot be considered as the sum of efforts expended by different fishing gears. This necessitates standardisation of fishing effort in unit base.
Interval estimation of the population allele frequency from qPCR analysis based on the restriction enzyme digestion (RED)-DeltaDeltaCq method (Osakabe et al. 2017, <doi:10.1016/j.pestbp.2017.04.003>), as well as general DeltaDeltaCq analysis. Compatible with the Cq measurement of DNA extracted from multiple individuals at once, so called "group-testing", this model assumes that the quantity of DNA extracted from an individual organism follows a gamma distribution. Therefore, the point estimate is robust regarding the uncertainty of the DNA yield.
This package creates dynamic grid layouts of images that can be included in Shiny applications and R markdown documents.
Wrapper functions around the Facebook Marketing API to create, read, update and delete custom audiences, images, campaigns, ad sets, ads and related content.
Bindings to libfluidsynth to parse and synthesize MIDI files. It can read MIDI into a data frame, play it on the local audio device, or convert into an audio file.
Estimate the of fractal dimension of a black area in 2D and 3D (slices) images using the box-counting method. See Klinkenberg B. (1994) <doi:10.1007/BF02065874>.
Generate privacy-preserving synthetic datasets that mirror structure, types, factor levels, and missingness; export bundles for LLM workflows (data plus JSON schema and guidance); and build fake data directly from SQL database tables without reading real rows. Methods are related to approaches in Nowok, Raab and Dibben (2016) <doi:10.32614/RJ-2016-019> and the foundation-model overview by Bommasani et al. (2021) <doi:10.48550/arXiv.2108.07258>.
This package provides allele frequency data for Short Tandem Repeat human genetic markers commonly used in forensic genetics for human identification and kinship analysis. Includes published population frequency data from the US National Institute of Standards and Technology, Federal Bureau of Investigation and the UK government.
Generating fractional binomial random variables and computing density, cumulative distribution, and quantiles of fractional binomial distributions. (Lee, J. (2023) <arXiv:2209.01516>.).
This package provides functions for fitting data to a quiescent growth model, i.e. a growth process that involves members of the population who stop dividing or propagating.
Maximum Likelihood Estimation of Stochastic Frontier Production and Cost Functions. Two specifications are available: the error components specification with time-varying efficiencies (Battese and Coelli, 1992, <doi:10.1007/BF00158774>) and a model specification in which the firm effects are directly influenced by a number of variables (Battese and Coelli, 1995, <doi:10.1007/BF01205442>).
We consider optimal subset selection in the setting that one needs to use only one data subset to represent the whole data set with minimum information loss, and devise a novel intersection-based criterion on selecting optimal subset, called as the FPC criterion, to handle with the optimal sub-estimator in distributed principal component analysis; That is, the FPCdpca. The philosophy of the package is described in Guo G. (2025) <doi:10.1016/j.physa.2024.130308>.
Finds the critical sample size ("critical point of stability") for a correlation to stabilize in Schoenbrodt and Perugini's definition of sequential stability (see <doi:10.1016/j.jrp.2013.05.009>).
Helps access various Fantasy Football APIs by handling authentication and rate-limiting, forming appropriate calls, and returning tidy dataframes which can be easily connected to other data sources.
Analysis of Bayesian adaptive enrichment clinical trial using Free-Knot Bayesian Model Averaging (FK-BMA) method of Maleyeff et al. (2024) for Gaussian data. Maleyeff, L., Golchi, S., Moodie, E. E. M., & Hudson, M. (2024) "An adaptive enrichment design using Bayesian model averaging for selection and threshold-identification of predictive variables" <doi:10.1093/biomtc/ujae141>.
An R client for the Federal Reserve Economic Data ('FRED') API <https://research.stlouisfed.org/docs/api/>. Functions to retrieve economic time series and other data from FRED'.
Collect marketing data from facebook Ads using the Windsor.ai API <https://windsor.ai/api-fields/>. Use four spaces when indenting paragraphs within the Description.
Extend shiny.semantic with extra Fomantic UI components. Create pages in a format similar to shiny', form validation and more.
This package implements the formulae required to calculate freedom from disease according to Cameron and Baldock (1998) <doi:10.1016/S0167-5877(97)00081-0>. These are the methods used at the Swedish national veterinary institute (SVA) to evaluate the performance of our nation animal disease surveillance programmes.
Processing forest inventory data with methods such as simple random sampling, stratified random sampling and systematic sampling. There are also functions for yield and growth predictions and model fitting, linear and nonlinear grouped data fitting, and statistical tests. References: Kershaw Jr., Ducey, Beers and Husch (2016). <doi:10.1002/9781118902028>.