Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of functions for outlier detection in functional data analysis. Methods implemented include directional outlyingness by Dai and Genton (2019) <doi:10.1016/j.csda.2018.03.017>, MS-plot by Dai and Genton (2018) <doi:10.1080/10618600.2018.1473781>, total variation depth and modified shape similarity index by Huang and Sun (2019) <doi:10.1080/00401706.2019.1574241>, and sequential transformations by Dai et al. (2020) <doi:10.1016/j.csda.2020.106960 among others. Additional outlier detection tools and depths for functional data like functional boxplot, (modified) band depth etc., are also available.
This package provides tools to quickly compile taxonomic and distribution data from the Brazilian Flora 2020.
An implementation of various learning algorithms based on fuzzy rule-based systems (FRBSs) for dealing with classification and regression tasks. Moreover, it allows to construct an FRBS model defined by human experts. FRBSs are based on the concept of fuzzy sets, proposed by Zadeh in 1965, which aims at representing the reasoning of human experts in a set of IF-THEN rules, to handle real-life problems in, e.g., control, prediction and inference, data mining, bioinformatics data processing, and robotics. FRBSs are also known as fuzzy inference systems and fuzzy models. During the modeling of an FRBS, there are two important steps that need to be conducted: structure identification and parameter estimation. Nowadays, there exists a wide variety of algorithms to generate fuzzy IF-THEN rules automatically from numerical data, covering both steps. Approaches that have been used in the past are, e.g., heuristic procedures, neuro-fuzzy techniques, clustering methods, genetic algorithms, squares methods, etc. Furthermore, in this version we provide a universal framework named frbsPMML', which is adopted from the Predictive Model Markup Language (PMML), for representing FRBS models. PMML is an XML-based language to provide a standard for describing models produced by data mining and machine learning algorithms. Therefore, we are allowed to export and import an FRBS model to/from frbsPMML'. Finally, this package aims to implement the most widely used standard procedures, thus offering a standard package for FRBS modeling to the R community.
An interface to the fastText library <https://github.com/facebookresearch/fastText>. The package can be used for text classification and to learn word vectors. An example how to use fastTextR can be found in the README file.
Emulates a Forth programming environment with added features to interface between R and Forth'. Implements most of the functionality described in the original "Starting Forth" textbook <https://www.forth.com/starting-forth/>.
Downloads all the datasets (you can exclude the daily ones or specify a list of those you are targeting specifically) from Kenneth French's Website at <https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html>, process them and convert them to list of xts (time series).
This package provides methods and tools designed to improve the forecast accuracy for a linearly constrained multiple time series, while fulfilling the linear/aggregation relationships linking the components (Girolimetto and Di Fonzo, 2024 <doi:10.48550/arXiv.2412.03429>). FoCo2 offers multi-task forecast combination and reconciliation approaches leveraging input from multiple forecasting models or experts and ensuring that the resulting forecasts satisfy specified linear constraints. In addition, linear inequality constraints (e.g., non-negativity of the forecasts) can be imposed, if needed.
Runs multiple individual time series models, and combines them into an ensembles of time series models. This is mainly used to predict the results of the monthly labor market report from the United States Bureau of Labor Statistics for virtually any part of the economy reported by the Bureau of Labor Statistics, but it can be easily modified to work with other types of time series data. For example, the package was used to predict the winning men's and women's time for the 2024 London Marathon.
This package provides functions to switch the BLAS'/'LAPACK optimized backend and change the number of threads without leaving the R session, which needs to be linked against the FlexiBLAS wrapper library <https://www.mpi-magdeburg.mpg.de/projects/flexiblas>.
Books are "Linear Models with R" published 1st Ed. August 2004, 2nd Ed. July 2014, 3rd Ed. February 2025 by CRC press, ISBN 9781439887332, and "Extending the Linear Model with R" published by CRC press in 1st Ed. December 2005 and 2nd Ed. March 2016, ISBN 9781584884248 and "Practical Regression and ANOVA in R" contributed documentation on CRAN (now very dated).
The following several classes of frailty models using a penalized likelihood estimation on the hazard function but also a parametric estimation can be fit using this R package: 1) A shared frailty model (with gamma or log-normal frailty distribution) and Cox proportional hazard model. Clustered and recurrent survival times can be studied. 2) Additive frailty models for proportional hazard models with two correlated random effects (intercept random effect with random slope). 3) Nested frailty models for hierarchically clustered data (with 2 levels of clustering) by including two iid gamma random effects. 4) Joint frailty models in the context of the joint modelling for recurrent events with terminal event for clustered data or not. A joint frailty model for two semi-competing risks and clustered data is also proposed. 5) Joint general frailty models in the context of the joint modelling for recurrent events with terminal event data with two independent frailty terms. 6) Joint Nested frailty models in the context of the joint modelling for recurrent events with terminal event, for hierarchically clustered data (with two levels of clustering) by including two iid gamma random effects. 7) Multivariate joint frailty models for two types of recurrent events and a terminal event. 8) Joint models for longitudinal data and a terminal event. 9) Trivariate joint models for longitudinal data, recurrent events and a terminal event. 10) Joint frailty models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time and/or longitudinal endpoints with the possibility to use a mediation analysis model. 11) Conditional and Marginal two-part joint models for longitudinal semicontinuous data and a terminal event. 12) Joint frailty-copula models for the validation of surrogate endpoints in multiple randomized clinical trials with failure-time endpoints. 13) Generalized shared and joint frailty models for recurrent and terminal events. Proportional hazards (PH), additive hazard (AH), proportional odds (PO) and probit models are available in a fully parametric framework. For PH and AH models, it is possible to consider type-varying coefficients and flexible semiparametric hazard function. Prediction values are available (for a terminal event or for a new recurrent event). Left-truncated (not for Joint model), right-censored data, interval-censored data (only for Cox proportional hazard and shared frailty model) and strata are allowed. In each model, the random effects have the gamma or normal distribution. Now, you can also consider time-varying covariates effects in Cox, shared and joint frailty models (1-5). The package includes concordance measures for Cox proportional hazards models and for shared frailty models. 14) Competing Joint Frailty Model: A single type of recurrent event and two terminal events. 15) functions to compute power and sample size for four Gamma-frailty-based designs: Shared Frailty Models, Nested Frailty Models, Joint Frailty Models, and General Joint Frailty Models. Each design includes two primary functions: a power function, which computes power given a specified sample size; and a sample size function, which computes the required sample size to achieve a specified power. 16) Weibull Illness-Death model with or without shared frailty between transitions. Left-truncated and right-censored data are allowed. 17) Weibull Competing risks model with or without shared frailty between the transitions. Left-truncated and right-censored data are allowed. Moreover, the package can be used with its shiny application, in a local mode or by following the link below.
Compares how well different models estimate a quantity of interest (the "focus") so that different models may be preferred for different purposes. Comparisons within any class of models fitted by maximum likelihood are supported, with shortcuts for commonly-used classes such as generalised linear models and parametric survival models. The methods originate from Claeskens and Hjort (2003) <doi:10.1198/016214503000000819> and Claeskens and Hjort (2008, ISBN:9780521852258).
This package provides functions to fit regression models for bounded continuous and discrete responses. In case of bounded continuous responses (e.g., proportions and rates), available models are the flexible beta (Migliorati, S., Di Brisco, A. M., Ongaro, A. (2018) <doi:10.1214/17-BA1079>), the variance-inflated beta (Di Brisco, A. M., Migliorati, S., Ongaro, A. (2020) <doi:10.1177/1471082X18821213>), the beta (Ferrari, S.L.P., Cribari-Neto, F. (2004) <doi:10.1080/0266476042000214501>), and their augmented versions to handle the presence of zero/one values (Di Brisco, A. M., Migliorati, S. (2020) <doi:10.1002/sim.8406>) are implemented. In case of bounded discrete responses (e.g., bounded counts, such as the number of successes in n trials), available models are the flexible beta-binomial (Ascari, R., Migliorati, S. (2021) <doi:10.1002/sim.9005>), the beta-binomial, and the binomial are implemented. Inference is dealt with a Bayesian approach based on the Hamiltonian Monte Carlo (HMC) algorithm (Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B. (2014) <doi:10.1201/b16018>). Besides, functions to compute residuals, posterior predictives, goodness of fit measures, convergence diagnostics, and graphical representations are provided.
This package provides a "tabular-data-resource" (<https://specs.frictionlessdata.io/tabular-data-resource/>) is a simple format to describe a singular tabular data resource such as a CSV file. It includes support both for metadata such as author and title and a schema to describe the data, for example the types of the fields/columns in the data. Create a tabular-data-resource by providing a data.frame and specifying metadata. Write and read tabular-data-resources to and from disk.
Extends data.table join functionality, lets it work with any data frame class, and provides a familiar x'/'y'-style interface, enabling broad use across R. Offers NA-safe matching by default, on-the-fly column selection, multiple match-handling on both sides, x or y row order, and a row origin indicator. Performs inner, left, right, full, semi- and anti-joins with equality and inequality conditions, plus cross joins. Specific support for data.table', (grouped) tibble, and sf'/'sfc objects and their attributes; returns a plain data frame otherwise. Avoids data-copying of inputs and outputs. Allows displaying the data.table code instead of (or as well as) executing it.
The main goal of this package is to present various fuzzy statistical tools. It intends to provide an implementation of the theoretical and empirical approaches presented in the book entitled "The signed distance measure in fuzzy statistical analysis. Some theoretical, empirical and programming advances" <doi: 10.1007/978-3-030-76916-1>. For the theoretical approaches, see Berkachy R. and Donze L. (2019) <doi:10.1007/978-3-030-03368-2_1>. For the empirical approaches, see Berkachy R. and Donze L. (2016) <ISBN: 978-989-758-201-1>). Important (non-exhaustive) implementation highlights of this package are as follows: (1) a numerical procedure to estimate the fuzzy difference and the fuzzy square. (2) two numerical methods of fuzzification. (3) a function performing different possibilities of distances, including the signed distance and the generalized signed distance for instance with all its properties. (4) numerical estimations of fuzzy statistical measures such as the variance, the moment, etc. (5) two methods of estimation of the bootstrap distribution of the likelihood ratio in the fuzzy context. (6) an estimation of a fuzzy confidence interval by the likelihood ratio method. (7) testing fuzzy hypotheses and/or fuzzy data by fuzzy confidence intervals in the Kwakernaak - Kruse and Meyer sense. (8) a general method to estimate the fuzzy p-value with fuzzy hypotheses and/or fuzzy data. (9) a method of estimation of global and individual evaluations of linguistic questionnaires. (10) numerical estimations of multi-ways analysis of variance models in the fuzzy context. The unbalance in the considered designs are also foreseen.
Around 10% of almost any predictive modeling project is spent in predictive modeling, funModeling and the book Data Science Live Book (<https://livebook.datascienceheroes.com/>) are intended to cover remaining 90%: data preparation, profiling, selecting best variables dataViz', assessing model performance and other functions.
Generate mock data in R using YAML configuration.
This package contains financial math functions and introductory derivative functions included in the Society of Actuaries and Casualty Actuarial Society Financial Mathematics exam, and some topics in the Models for Financial Economics exam.
An R client for the Federal Reserve Economic Data ('FRED') API <https://research.stlouisfed.org/docs/api/>. Functions to retrieve economic time series and other data from FRED'.
This package provides methods to compute simultaneous prediction and confidence bands for dense time series data. The implementation builds on the functional bootstrap approach proposed by Lenhoff et al. (1999) <doi:10.1016/S0966-6362(98)00043-5> and extended by Koska et al. (2023) <doi:10.1016/j.jbiomech.2023.111506> to support both independent and clustered (hierarchical) data. Includes a simple API (see band()) and an Rcpp backend for performance.
Perform optimal transport based tests in factorial designs as introduced in Groppe et al. (2025) <doi:10.48550/arXiv.2509.13970> via the FDOTT() function. These tests are inspired by ANOVA and its nonparametric counterparts. They allow for testing linear relationships in factorial designs between finitely supported probability measures on a metric space. Such relationships include equality of all measures (no treatment effect), interaction effects between a number of factors, as well as main and simple factor effects.
This presents a comprehensive set of tools for the analysis and visualization of drug formulation data. It includes functions for statistical analysis, regression modeling, hypothesis testing, and comparative analysis to assess the impact of formulation parameters on drug release and other critical attributes. Additionally, the package offers a variety of data visualization functions, such as scatterplots, histograms, and boxplots, to facilitate the interpretation of formulation data. With its focus on usability and efficiency, this package aims to streamline the drug formulation process and aid researchers in making informed decisions during formulation design and optimization.
Exports flextable objects to xlsx files, utilizing functionalities provided by flextable and openxlsx2'.