Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the conditional estimation procedure of Lee, Sun, Sun and Taylor (2016) <doi:10.1214/15-AOS1371>. This procedure allows hypothesis testing on the mean of a normal random vector subject to linear constraints.
Use structural equation modeling to estimate average and conditional effects of a treatment variable on an outcome variable, taking into account multiple continuous and categorical covariates.
This package provides functions for the computation of functional elastic shape means over sets of open planar curves. The package is particularly suitable for settings where these curves are only sparsely and irregularly observed. It uses a novel approach for elastic shape mean estimation, where planar curves are treated as complex functions and a full Procrustes mean is estimated from the corresponding smoothed Hermitian covariance surface. This is combined with the methods for elastic mean estimation proposed in Steyer, Stöcker, Greven (2022) <doi:10.1111/biom.13706>. See Stöcker et. al. (2022) <arXiv:2203.10522> for details.
Allows the user to determine minimum sample sizes that achieve target size and power at a specified alternative. For more information, see â Exact samples sizes for clinical trials subject to size and power constraintsâ by Lloyd, C.J. (2022) Preprint <doi:10.13140/RG.2.2.11828.94085>.
This package implements stochastic simulations of community assembly (ecological diversification) using customizable ecospace frameworks (functional trait spaces). Provides a wrapper to calculate common ecological disparity and functional ecology statistical dynamics as a function of species richness. Functions are written so they will work in a parallel-computing environment.
Likelihood-based approaches to estimate linear regression parameters and treatment effects in the presence of endogeneity. Specifically, this package includes James Heckman's classical simultaneous equation models-the sample selection model for outcome selection bias and hybrid model with structural shift for endogenous treatment. For more information, see the seminal paper of Heckman (1978) <DOI:10.3386/w0177> in which the details of these models are provided. This package accommodates repeated measures on subjects with a working independence approach. The hybrid model further accommodates treatment effect modification.
Fits Leroux model in spectral domain to estimate causal spatial effect as detailed in Guan, Y; Page, G.L.; Reich, B.J.; Ventrucci, M.; Yang, S; (2020) <arXiv:2012.11767>. Both the parametric and semi-parametric models are available. The semi-parametric model relies on INLA'. The INLA package can be obtained from <https://www.r-inla.org/>.
The purpose of Early Warning Systems (EWS) is to detect accurately the occurrence of a crisis, which is represented by a binary variable which takes the value of one when the event occurs, and the value of zero otherwise. EWS are a toolbox for policymakers to prevent or attenuate the impact of economic downturns. Modern EWS are based on the econometric framework of Kauppi and Saikkonen (2008) <doi:10.1162/rest.90.4.777>. Specifically, this framework includes four dichotomous models, relying on a logit approach to model the relationship between yield spreads and future recessions, controlling for recession risk factors. These models can be estimated in a univariate or a balanced panel framework as in Candelon, Dumitrescu and Hurlin (2014) <doi:10.1016/j.ijforecast.2014.03.015>. This package provides both methods for estimating these models and a dataset covering 13 OECD countries over a period of 45 years. In addition, this package also provides methods for the analysis of the propagation mechanisms of an exogenous shock, as well as robust confidence intervals for these response functions using a block-bootstrap method as in Lajaunie (2021). This package constitutes a useful toolbox (data and functions) for scholars as well as policymakers.
Perform analysis of variance and other important complementary analyses. The functions are easy to use. Performs analysis in various designs, with balanced and unbalanced data.
Make your shiny application as executable program. Users do not need to install R and shiny on their system.
Empirical Bayes thresholding using the methods developed by I. M. Johnstone and B. W. Silverman. The basic problem is to estimate a mean vector given a vector of observations of the mean vector plus white noise, taking advantage of possible sparsity in the mean vector. Within a Bayesian formulation, the elements of the mean vector are modelled as having, independently, a distribution that is a mixture of an atom of probability at zero and a suitable heavy-tailed distribution. The mixing parameter can be estimated by a marginal maximum likelihood approach. This leads to an adaptive thresholding approach on the original data. Extensions of the basic method, in particular to wavelet thresholding, are also implemented within the package.
This package provides several confidence interval and testing procedures using event-specific win ratios for semi-competing risks data with non-terminal and terminal events, as developed in Yang et al. (2021<doi:10.1002/sim.9266>). Compared with conventional methods for survival data, these procedures are designed to utilize more data for improved inference procedures with semi-competing risks data. The event-specific win ratios were introduced in Yang and Troendle (2021<doi:10.1177/1740774520972408>). In this package, the event-specific win ratios and confidence intervals are obtained for each event type, and several testing procedures are developed for the global null of no treatment effect on either terminal or non-terminal events. Furthermore, a test of proportional hazard assumptions, under which the event-specific win ratios converge to the hazard ratios, and a test of equal hazard ratios are provided. For summarizing the treatment effect on all events, confidence intervals for linear combinations of the event-specific win ratios are available using pre-determined or data-driven weights. Asymptotic properties of these inference procedures are discussed in Yang et al (2021<doi:10.1002/sim.9266>). Also, transformations are used to yield better control of the type one error rates for moderately sized data sets.
This package performs analysis of polynomial regression in simple designs with quantitative treatments.
This package provides tools for accessing and analyzing eBird Status and Trends Data Products (<https://science.ebird.org/en/status-and-trends>). eBird (<https://ebird.org/home>) is a global database of bird observations collected by member of the public. eBird Status and Trends uses these data to model global bird distributions, abundances, and population trends at a high spatial and temporal resolution.
This package provides a set of functions for computing expected permutation matrices given a matrix of likelihoods for each individual assignment. It has been written to accompany the forthcoming paper Computing expectations and marginal likelihoods for permutations'. Publication details will be updated as soon as they are finalized.
Estimation of the parameters in a model for symmetric relational data (e.g., the above-diagonal part of a square matrix), using a model-based eigenvalue decomposition and regression. Missing data is accommodated, and a posterior mean for missing data is calculated under the assumption that the data are missing at random. The marginal distribution of the relational data can be arbitrary, and is fit with an ordered probit specification. See Hoff (2007) <doi:10.48550/arXiv.0711.1146>. for details on the model.
Software accompanying Gary King's book: A Solution to the Ecological Inference Problem. (1997). Princeton University Press. ISBN 978-0691012407.
Data for use with the Sage Introduction to Exponential Random Graph Modeling text by Jenine K. Harris. Network data set consists of 1283 local health departments and the communication links among them along with several attributes.
Event dataset repository including both real-life and artificial event logs. They can be used in combination with functionalities provided by the bupaR packages. Janssenswillen et al. (2020) <http://ceur-ws.org/Vol-2703/paperTD7.pdf>.
This package provides a plotting package for climate science and services. Provides a set of functions for visualizing climate data, including maps, time series, scorecards and other diagnostics. Some functions are adapted and extended from the s2dv and CSTools packages (Manubens et al. (2018) <doi:10.1016/j.envsoft.2018.01.018>; Pérez-Zanón et al. (2022) <doi:10.5194/gmd-15-6115-2022>), with more consistent and integrated functionalities.
Ever read or wrote source files containing sectioning comments? If these comments are markdown style section comments, you can excerpt them and set a table of contents using the python package excerpts (<https://pypi.org/project/excerpts/>).
The experiment selector cross-validated targeted maximum likelihood estimator (ES-CVTMLE) aims to select the experiment that optimizes the bias-variance tradeoff for estimating a causal average treatment effect (ATE) where different experiments may include a randomized controlled trial (RCT) alone or an RCT combined with real-world data. Using cross-validation, the ES-CVTMLE separates the selection of the optimal experiment from the estimation of the ATE for the chosen experiment. The estimated bias term in the selector is a function of the difference in conditional mean outcome under control for the RCT compared to the combined experiment. In order to help include truly unbiased external data in the analysis, the estimated average treatment effect on a negative control outcome may be added to the bias term in the selector. For more details about this method, please see Dang et al. (2022) <arXiv:2210.05802>.
The Australian Regulatory Guidelines for Prescription Medicines (ARGPM), guidance on "Stability testing for prescription medicines", recommends to predict the shelf life of chemically derived medicines from stability data by taking the worst case situation at batch release into account. Consequently, if a change over time is observed, a release limit needs to be specified. Finding a release limit and the associated shelf life is supported, as well as the standard approach that is recommended by guidance Q1E "Evaluation of stability data" from the International Council for Harmonisation (ICH).
The amplitude-dependent autoregressive time series model (EXPAR) proposed by Haggan and Ozaki (1981) <doi:10.2307/2335819> was improved by incorporating the moving average (MA) framework for capturing the variability efficiently. Parameters of the EXPARMA model can be estimated using this package. The user is provided with the best fitted EXPARMA model for the data set under consideration.