Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides the alpha-adjustment correction from "Benjamini, Y., & Hochberg, Y. (1995) <doi:10.1111/j.2517-6161.1995.tb02031.x> Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289-300". For researchers interested in using the exact mathematical formulas and procedures as used in the original paper.
Computing and visualizing comparative asymptotic timings of different algorithms and code versions. Also includes functionality for comparing empirical timings with expected references such as linear or quadratic, <https://en.wikipedia.org/wiki/Asymptotic_computational_complexity> Also includes functionality for measuring asymptotic memory and other quantities.
Data on Asylum and Resettlement for the UK, provided by the Home Office <https://www.gov.uk/government/statistical-data-sets/immigration-system-statistics-data-tables>.
Amyloid propensity prediction neural network (APPNN) is an amyloidogenicity propensity predictor based on a machine learning approach through recursive feature selection and feed-forward neural networks, taking advantage of newly published sequences with experimental, in vitro, evidence of amyloid formation.
With appRiori <doi:10.1177/25152459241293110>, users upload the research variables and the app guides them to the best set of comparisons fitting the hypotheses, for both main and interaction effects. Through a graphical explanation and empirical examples on reproducible data, it is shown that it is possible to understand both the logic behind the planned comparisons and the way to interpret them when a model is tested.
This package provides functions to estimate and interpret the alpha-NOMINATE ideal point model developed in Carroll et al. (2013, <doi:10.1111/ajps.12029>). alpha-NOMINATE extends traditional spatial voting frameworks by allowing for a mixture of Gaussian and quadratic utility functions, providing flexibility in modeling political actors preferences. The package uses Markov Chain Monte Carlo (MCMC) methods for parameter estimation, supporting robust inference about individuals ideological positions and the shape of their utility functions. It also contains functions to simulate data from the model and to calculate the probability of a vote passing given the ideal points of the legislators/voters and the estimated location of the choice alternatives.
Visualization of Design of Experiments from the agricolae package with ggplot2 framework The user provides an experiment design from the agricolae package, calls the corresponding function and will receive a visualization with ggplot2 based functions that are specific for each design. As there are many different designs, each design is tested on its type. The output can be modified with standard ggplot2 commands or with other packages with ggplot2 function extensions.
An interface for data processing, building models, predicting values and analysing outcomes. Fitting Linear Models, Robust Fitting of Linear Models, k-Nearest Neighbor Classification, 1-Nearest Neighbor Classification, and Conditional Inference Trees are available.
This package provides functions and data to accompany the 5th edition of the book "Applied Nonparametric Statistical Methods" (4th edition: Sprent & Smeeton, 2024, ISBN:158488701X), the revisions from the 4th edition including a move from describing the output from a miscellany of statistical software packages to using R. While the output from many of the functions can also be obtained using a range of other R functions, this package provides functions in a unified setting and give output using both p-values and confidence intervals, exemplifying the book's approach of treating p-values as a guide to statistical importance and not an end product in their own right. Please note that in creating the ANSM5 package we do not claim to have produced software which is necessarily the most computationally efficient nor the most comprehensive.
Import, manipulate and explore results generated by Antares', a powerful open source software developed by RTE (Réseau de Transport dâ à lectricité) to simulate and study electric power systems (more information about Antares here : <https://antares-simulator.org/>).
This package provides a collection of tools for antitrust practitioners, including the ability to calibrate different consumer demand systems and simulate the effects of mergers under different competitive regimes.
Automatically calculates cognostic groups for plot objects and list column plot objects. Results are returned in a nested data frame.
Tool is created for regression, prediction and forecast analysis of macroeconomic and credit data. The package includes functions from existing R packages adapted for banking sector of Kazakhstan. The purpose of the package is to optimize statistical functions for easier interpretation for bank analysts and non-statisticians.
In fields such as ecology, microbiology, and genomics, non-Euclidean distances are widely applied to describe pairwise dissimilarity between samples. Given these pairwise distances, principal coordinates analysis (PCoA) is commonly used to construct a visualization of the data. However, confounding covariates can make patterns related to the scientific question of interest difficult to observe. We provide aPCoA as an easy-to-use tool to improve data visualization in this context, enabling enhanced presentation of the effects of interest. Details are described in Yushu Shi, Liangliang Zhang, Kim-Anh Do, Christine Peterson and Robert Jenq (2020) Bioinformatics, Volume 36, Issue 13, 4099-4101.
Providing ways to estimate the value of European stock options given historical stock price data. It includes functions for calculating option values based on autoregressiveâ moving-average (ARMA) models and generates information about these models. This package is made to be easy to understand and for financial analysis capabilities.
Analysis of data from unreplicated orthogonal experiments such as 2-level factorial and fractional factorial designs and Plackett-Burman designs using the all possible comparisons (APC) methodology developed by Miller (2005) <doi:10.1198/004017004000000608>.
One and two sample mean and variance tests (differences and ratios) are considered. The test statistics are all expressed in the same form as the Student t-test, which facilitates their presentation in the classroom. This contribution also fills the gap of a robust (to non-normality) alternative to the chi-square single variance test for large samples, since no such procedure is implemented in standard statistical software.
Create American Psychological Association Style, Seventh Edition documents. Format numbers and text consistent with APA style. Create tables that comply with APA style by extending flextable functions.
Multi-category angle-based large-margin classifiers. See Zhang and Liu (2014) <doi:10.1093/biomet/asu017> for details.
An interactive document on the topic of one-way and two-way analysis of variance using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://tinyurl.com/ANOVAStatsTool>.
The transmission between two time-series prices is assessed. It contains several functions for linear and nonlinear threshold co-integration, and furthermore, symmetric and asymmetric error correction models.
This package provides a pipeable, transparent implementation of areal weighted interpolation with support for interpolating multiple variables in a single function call. These tools provide a full-featured workflow for validation and estimation that fits into both modern data management (e.g. tidyverse) and spatial data (e.g. sf) frameworks.
This package provides functions to access data from public RESTful APIs including the ArgentinaDatos API', REST Countries API', and World Bank API related to Argentina's exchange rates, inflation, political figures, holidays, economic indicators, and general country-level statistics. Additionally, the package includes curated datasets related to Argentina, covering topics such as economic indicators, biodiversity, agriculture, human rights, genetic data, and consumer prices. The package supports research and analysis focused on Argentina by integrating open APIs with high-quality datasets from various domains. For more details on the APIs, see: ArgentinaDatos API <https://argentinadatos.com/>, REST Countries API <https://restcountries.com/>, and World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>.
Average population attributable fractions are calculated for a set of risk factors (either binary or ordinal valued) for both prospective and case- control designs. Confidence intervals are found by Monte Carlo simulation. The method can be applied to either prospective or case control designs, provided an estimate of disease prevalence is provided. In addition to an exact calculation of AF, an approximate calculation, based on randomly sampling permutations has been implemented to ensure the calculation is computationally tractable when the number of risk factors is large.