Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a graph implementation that can be thought of as two tidy data frames describing node and edge data respectively. It provides an approach to manipulate these two virtual data frames using the API defined in the dplyr package, and it also provides tidy interfaces to a lot of common graph algorithms.
Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees. It is as simple as Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms, and uses only common control parameters such as colony size and maximum cycle number. The r-abcoptim implements the Artificial bee colony optimization algorithm http://mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf. This version is a work-in-progress and is written in R code.
Join tables together based not on whether columns match exactly, but whether they are similar by some comparison. Implementations include string distance and regular expression matching.
This package provides tools for the computation of the matrix exponential, logarithm, square root, and related quantities.
As a successor of the packages BatchJobs and BatchExperiments, this package provides a parallel implementation of the Map function for high performance computing systems managed by various schedulers. A multicore and socket mode allow the parallelization on a local machines, and multiple machines can be hooked up via SSH to create a makeshift cluster. Moreover, the package provides an abstraction mechanism to define large-scale computer experiments in a well-organized and reproducible way.
This package provides a collection of miscellaneous basic statistic functions and convenience wrappers for efficiently describing data. The author's intention was to create a toolbox, which facilitates the (notoriously time consuming) first descriptive tasks in data analysis, consisting of calculating descriptive statistics, drawing graphical summaries and reporting the results. The package contains furthermore functions to produce documents using MS Word (or PowerPoint) and functions to import data from Excel. Many of the included functions can be found scattered in other packages and other sources written partly by Titans of R. The reason for collecting them here, was primarily to have them consolidated in ONE instead of dozens of packages (which themselves might depend on other packages which are not needed at all), and to provide a common and consistent interface as far as function and arguments naming, NA handling, recycling rules etc. are concerned. Google style guides were used as naming rules (in absence of convincing alternatives). The BigCamelCase style was consequently applied to functions borrowed from contributed R packages as well.
This package is intended to make it easy to create D3 JavaScript network, tree, dendrogram, and Sankey graphs from R using data frames.
This package provides a recursively partitioned mixture model for Beta and Gaussian mixtures. This is a model-based clustering algorithm that returns a hierarchy of classes, similar to hierarchical clustering, but also similar to finite mixture models.
This package provides statistical procedures for calculating population-mean cosinor, non-stationary cosinor, estimation of best-fitting period, tests of population rhythm differences and more.
Create, read and write GEXF (Graph Exchange XML Format) graph files (used in Gephi and others). It allows the user to easily build/read graph files including attributes, GEXF visual attributes (such as color, size, and position), network dynamics (for both edges and nodes) and edge weighting. Users can build/handle graphs element-by-element or massively through data-frames, visualize the graph on a web browser through gexf-js (a JavaScript library) and interact with the igraph package.
This package provides a set of predicates and assertions for checking the properties of matrices. This is mainly for use by other package developers who want to include run-time testing features in their own packages.
This package provides a collection of perceptually uniform color maps made by Peter Kovesi (2015) "Good Colour Maps: How to Design Them" <arXiv:1509.03700> at the Centre for Exploration Targeting (CET).
This package provides functions to compute insolation on tilted surfaces, computes atmospheric transmittance and related parameters such as: Earth radius vector, declination, sunset and sunrise, daylength, equation of time, vector in the direction of the sun, vector normal to surface, and some atmospheric physics.
The r-abhgenotyper package provides simple imputation, error-correction and plotting capacities for genotype data. The package is supposed to serve as an intermediate but independent analysis tool between the TASSEL GBS pipeline and the r-qtl package. It provides functionalities not found in either TASSEL or r-qtl in addition to visualization of genotypes as "graphical genotypes".
This package provides Gaussian mixture models, k-means, mini-batch-kmeans, k-medoids and affinity propagation clustering with the option to plot, validate, predict (new data) and estimate the optimal number of clusters. The package takes advantage of RcppArmadillo to speed up the computationally intensive parts of the functions. For more information, see
"Clustering in an Object-Oriented Environment" by Anja Struyf, Mia Hubert, Peter Rousseeuw (1997), Journal of Statistical Software, https://doi.org/10.18637/jss.v001.i04;
"Web-scale k-means clustering" by D. Sculley (2010), ACM Digital Library, https://doi.org/10.1145/1772690.1772862;
"Armadillo: a template-based C++ library for linear algebra" by Sanderson et al (2016), The Journal of Open Source Software, https://doi.org/10.21105/joss.00026;
"Clustering by Passing Messages Between Data Points" by Brendan J. Frey and Delbert Dueck, Science 16 Feb 2007: Vol. 315, Issue 5814, pp. 972-976, https://doi.org/10.1126/science.1136800.
This package provides helper functions to work with spreadsheets and the A1:D10 style of cell range specification.
Keep track of dates in terms of fractional calendar months per Damien Laker "Time Calculations for Annualizing Returns: the Need for Standardization", The Journal of Performance Measurement, 2008. Model dates as of close of business. Perform date arithmetic in units of "months" and "years". Allow "infinite" dates to model "ultimate" time.
LIGER is a package for integrating and analyzing multiple single-cell datasets, developed and maintained by the Macosko lab. It relies on integrative non-negative matrix factorization to identify shared and dataset-specific factors.
This package provides gsubfn which is like gsub but can take a replacement function or certain other objects instead of the replacement string. Matches and back references are input to the replacement function and replaced by the function output. gsubfn can be used to split strings based on content rather than delimiters and for quasi-perl-style string interpolation. The package also has facilities for translating formulas to functions and allowing such formulas in function calls instead of functions.
The Rcpp package provides R functions as well as C++ classes which offer a seamless integration of R and C++. Many R data types and objects can be mapped back and forth to C++ equivalents which facilitates both writing of new code as well as easier integration of third-party libraries. Documentation about Rcpp is provided by several vignettes included in this package, via the Rcpp Gallery site at <http://gallery.rcpp.org>, the paper by Eddelbuettel and Francois (2011, JSS), and the book by Eddelbuettel (2013, Springer); see citation("Rcpp") for details on these last two.
This package provides a complete GCC cross toolchain for C/C++ development to be installed in user profiles. This includes GCC, as well as libc (headers and binariesl), and Binutils. GCC is the GNU Compiler Collection.
This package provides a complete GCC cross toolchain for C/C++ development to be installed in user profiles. This includes GCC, as well as libc (headers and binariesl), and Binutils. GCC is the GNU Compiler Collection.
This package provides a complete GCC cross toolchain for C/C++ development to be installed in user profiles. This includes GCC, as well as libc (headers and binariesl), and Binutils. GCC is the GNU Compiler Collection.
This package provides a complete GCC cross toolchain for C/C++ development to be installed in user profiles. This includes GCC, as well as libc (headers and binariesl), and Binutils. GCC is the GNU Compiler Collection.