Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Several function related to Experimental Design are implemented here, see "Optimal Experimental Design with R" by Rasch D. et. al (ISBN 9781439816974).
Introduces optional types with some() and none, as well as match_with() from functional languages.
Fits two-dimensional data by means of orthogonal nonlinear least-squares using Levenberg-Marquardt minimization and provides functionality for fit diagnostics and plotting. Delivers the same results as the ODRPACK Fortran implementation described in Boggs et al. (1989) <doi:10.1145/76909.76913>, but is implemented in pure R.
Maps of Australian coastline and administrative regions. Data can be drawn or accessed directly as simple features objects. Includes simple functions for country or state maps of Australia and in-built data sets of administrative regions from the Australian Bureau of Statistics <https://www.abs.gov.au/>. Layers include electoral divisions and local government areas, simplified from the original sources but with sufficient detail to allow mapping of a local municipality.
The log-rank test is performed to assess the survival outcomes between two group. When there is no proper control group or obtaining such data is cumbersome, one sample log-rank test can be applied. This package performs one sample log-rank test as described in Finkelstein et al. (2003)<doi:10.1093/jnci/djt227> and variation of the test for small sample sizes which is detailed in FD Liddell (1984)<doi:10.1136/jech.38.1.85> paper. Visualization function in the package generates Kaplan-Meier Curve comparing survival curve of the general population against that of the population of interest.
This package provides a set of standard benchmark optimization functions for R and a common interface to sample them.
Makes it easy to display descriptive information on a data set. Getting an easy overview of a data set by displaying and visualizing sample information in different tables (e.g., time and scope conditions). The package also provides publishable LaTeX code to present the sample information.
This package provides unified workflows for quality control, normalization, and visualization of proteomic and metabolomic data. The package simplifies preprocessing through automated imputation, scaling, and principal component analysis (PCA)-based exploratory analysis, enabling researchers to prepare omics datasets efficiently for downstream statistical and machine learning analyses.
The olr function systematically evaluates multiple linear regression models by exhaustively fitting all possible combinations of independent variables against the specified dependent variable. It selects the model that yields the highest adjusted R-squared (by default) or R-squared, depending on user preference. In model evaluation, both R-squared and adjusted R-squared are key metrics: R-squared measures the proportion of variance explained but tends to increase with the addition of predictorsâ regardless of relevanceâ potentially leading to overfitting. Adjusted R-squared compensates for this by penalizing model complexity, providing a more balanced view of fit quality. The goal of olr is to identify the most suitable model that captures the underlying structure of the data while avoiding unnecessary complexity. By comparing both metrics, it offers a robust evaluation framework that balances predictive power with model parsimony. Example Analogy: Imagine a gardener trying to understand what influences plant growth (the dependent variable). They might consider variables like sunlight, watering frequency, soil type, and nutrients (independent variables). Instead of manually guessing which combination works best, the olr function automatically tests every possible combination of predictors and identifies the most effective modelâ based on either the highest R-squared or adjusted R-squared value. This saves the user from trial-and-error modeling and highlights only the most meaningful variables for explaining the outcome. A Python version is also available at <https://pypi.org/project/olr>.
DNA methylation is an important epigenetic process that regulates gene activity through chemical modifications of DNA without changing its sequence. OpEnCAST is a plant-specific ensemble-based prediction package that identifies 4mC, 5mC and 6mA methylation sites directly from DNA sequences. It combines multiple machine learning algorithms trained on monocot (Oryza sp.) and dicot (Arabidopsis sp.) reference models to deliver accurate predictions. This methodology is being inspired by the ensemble algorithm for methylation prediction developed by Wang et al. (2022) <doi:10.1186/s12859-022-04756-1>.
This contains functions and data used by the Open Visualization Academy classes on data processing and visualization. The tutorial included with this package requires the gradethis package which can be installed using "remotes::install_github('rstudio/gradethis')".
This package provides functions to perform subspace clustering and classification.
This package provides a single function options.ifunset(...) is contained herewith, which allows the user to set a global option ONLY if it is not already set. By this token, for package maintainers this function can be used in preference to the standard options(...) function, making provision for THEIR end user to place options(...) directives within their .Rprofile file, which will not be overridden at the point when a package is loaded.
This package provides an interface to connect R with the <https://github.com/IDEMSInternational/open-app-builder> OpenAppBuilder platform, enabling users to retrieve and work with user and notification data for analysis and processing. It is designed for developers and analysts to seamlessly integrate data from OpenAppBuilder into R workflows via a Postgres database connection, allowing direct querying and import of app data into R.
Outlier detection method that flags suspicious values within observations, constrasting them against the normal values in a user-readable format, potentially describing conditions within the data that make a given outlier more rare. Full procedure is described in Cortes (2020) <doi:10.48550/arXiv.2001.00636>. Loosely based on the GritBot <https://www.rulequest.com/gritbot-info.html> software.
This package provides a framework for fitting adaptive forecasting models. Provides a way to use forecasts as input to models, e.g. weather forecasts for energy related forecasting. The models can be fitted recursively and can easily be setup for updating parameters when new data arrives. See the included vignettes, the website <https://onlineforecasting.org> and the paper "onlineforecast: An R package for adaptive and recursive forecasting" <https://journal.r-project.org/articles/RJ-2023-031/>.
Social media sites often embed cards when links are shared, based on metadata in the Open Graph Protocol (<https://ogp.me/>). This supports extracting that metadata from a website. It further allows for the creation of tags to add to a website to support the Open Graph Protocol and provides a list of the standard tags and their required properties.
Intended to create standard human-in-the-loop validity tests for typical automated content analysis such as topic modeling and dictionary-based methods. This package offers a standard workflow with functions to prepare, administer and evaluate a human-in-the-loop validity test. This package provides functions for validating topic models using word intrusion, topic intrusion (Chang et al. 2009, <https://papers.nips.cc/paper/3700-reading-tea-leaves-how-humans-interpret-topic-models>) and word set intrusion (Ying et al. 2021) <doi:10.1017/pan.2021.33> tests. This package also provides functions for generating gold-standard data which are useful for validating dictionary-based methods. The default settings of all generated tests match those suggested in Chang et al. (2009) and Song et al. (2020) <doi:10.1080/10584609.2020.1723752>.
Many treatment effect estimators can be written as weighted outcomes. These weights have established use cases like checking covariate balancing via packages like cobalt'. This package takes the original estimator objects and outputs these outcome weights. It builds on the general framework of Knaus (2024) <doi:10.48550/arXiv.2411.11559>. This version is compatible with the grf package and provides an internal implementation of Double Machine Learning.
Facilitates the automatic detection of acoustic signals, providing functions to diagnose and optimize the performance of detection routines. Detections from other software can also be explored and optimized. This package has been peer-reviewed by rOpenSci. Araya-Salas et al. (2022) <doi:10.1101/2022.12.13.520253>.
This package provides a comprehensive set of helpers that streamline data transmission and processing, making it effortless to interact with the OpenAI API.
This package implements ordered beta regression models, which are for modeling continuous variables with upper and lower bounds, such as survey sliders, dose-response relationships and indexes. For more information, see Kubinec (2023) <doi:10.31235/osf.io/2sx6y>. The package is a front-end to the R package brms', which facilitates a range of regression specifications, including hierarchical, dynamic and multivariate modeling.
Consider a data matrix of n individuals with p variates. The objective general index (OGI) is a general index that combines the p variates into a univariate index in order to rank the n individuals. The OGI is always positively correlated with each of the variates. More details can be found in Sei (2016) <doi:10.1016/j.jmva.2016.02.005>.
Evaluates the Owen Q-function for an integer value of the degrees of freedom, by applying Owen's algorithm (1965) <doi:10.1093/biomet/52.3-4.437>. It is useful for the calculation of the power of equivalence tests.