Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Compares how well different models estimate a quantity of interest (the "focus") so that different models may be preferred for different purposes. Comparisons within any class of models fitted by maximum likelihood are supported, with shortcuts for commonly-used classes such as generalised linear models and parametric survival models. The methods originate from Claeskens and Hjort (2003) <doi:10.1198/016214503000000819> and Claeskens and Hjort (2008, ISBN:9780521852258).
Efficiently implementing two complementary methodologies for discovering motifs in functional data: ProbKMA and FunBIalign. Cremona and Chiaromonte (2023) "Probabilistic K-means with Local Alignment for Clustering and Motif Discovery in Functional Data" <doi:10.1080/10618600.2022.2156522> is a probabilistic K-means algorithm that leverages local alignment and fuzzy clustering to identify recurring patterns (candidate functional motifs) across and within curves, allowing different portions of the same curve to belong to different clusters. It includes a family of distances and a normalization to discover various motif types and learns motif lengths in a data-driven manner. It can also be used for local clustering of misaligned data. Di Iorio, Cremona, and Chiaromonte (2023) "funBIalign: A Hierarchical Algorithm for Functional Motif Discovery Based on Mean Squared Residue Scores" <doi:10.48550/arXiv.2306.04254> applies hierarchical agglomerative clustering with a functional generalization of the Mean Squared Residue Score to identify motifs of a specified length in curves. This deterministic method includes a small set of user-tunable parameters. Both algorithms are suitable for single curves or sets of curves. The package also includes a flexible function to simulate functional data with embedded motifs, allowing users to generate benchmark datasets for validating and comparing motif discovery methods.
We facilitate the analysis of full factorial mating designs with mixed-effects models. The package contains six vignettes containing detailed examples.
Create local, regional, and global explanations for any machine learning model with forward marginal effects. You provide a model and data, and fmeffects computes feature effects. The package is based on the theory in: C. A. Scholbeck, G. Casalicchio, C. Molnar, B. Bischl, and C. Heumann (2022) <doi:10.48550/arXiv.2201.08837>.
It implements an improved and computationally faster version of the original Stepwise Gaussian Graphical Algorithm for estimating the Omega precision matrix from high-dimensional data. Zamar, R., Ruiz, M., Lafit, G. and Nogales, J. (2021) <doi:10.52933/jdssv.v1i2.11>.
This package provides tools to work with the Flexible Dirichlet distribution. The main features are an E-M algorithm for computing the maximum likelihood estimate of the parameter vector and a function based on conditional bootstrap to estimate its asymptotic variance-covariance matrix. It contains also functions to plot graphs, to generate random observations and to handle compositional data.
This package creates a full rank matrix out of a given matrix. The intended use is for one-hot encoded design matrices that should be used in linear models to ensure that significant associations can be correctly interpreted. However, fullRankMatrix can be applied to any matrix to make it full rank. It removes columns with only 0's, merges duplicated columns and discovers linearly dependent columns and replaces them with linearly independent columns that span the space of the original columns. Columns are renamed to reflect those modifications. This results in a full rank matrix that can be used as a design matrix in linear models. The algorithm and some functions are inspired by Kuhn, M. (2008) <doi:10.18637/jss.v028.i05>.
This package provides a collection of utility functions to download and manage data sets from the Internet or from other sources.
Small set of functions designed to speed up the computation of certain matrix operations that are commonly used in statistics and econometrics. It provides efficient implementations for the computation of several structured matrices, matrix decompositions and statistical procedures, many of which have minimal memory overhead. Furthermore, the package provides interfaces to C code callable by another C code from other R packages.
An implementation of the Fizz Buzz algorithm, as defined e.g. in <https://en.wikipedia.org/wiki/Fizz_buzz>. It provides the standard algorithm with 3 replaced by Fizz and 5 replaced by Buzz, with the option of specifying start and end numbers, step size and the numbers being replaced by fizz and buzz, respectively. This package gives interviewers the optional answer of "I use fizzbuzzR::fizzbuzz()" when interviewing rather than having to write an algorithm themselves.
Some functions of ade4 and stats are combined in order to obtain a partition of the rows of a data table, with columns representing variables of scales: quantitative, qualitative or frequency. First, a principal axes method is performed and then, a combination of Ward agglomerative hierarchical classification and K-means is performed, using some of the first coordinates obtained from the previous principal axes method. In order to permit different weights of the elements to be clustered, the function kmeansW', programmed in C++, is included. It is a modification of kmeans'. Some graphical functions include the option: gg=FALSE'. When gg=TRUE', they use the ggplot2 and ggrepel packages to avoid the super-position of the labels.
Many Fitbit users, and R-friendly Fitbit users especially, have found themselves curious about their Fitbit data. Fitbit aggregates a large amount of personal data, much of which is interesting for personal research and to satisfy curiosity, and is even potentially useful in medical settings. The goal of fitbitr is to make interfacing with the Fitbit API as streamlined as possible, to make it simple for R users of all backgrounds and comfort levels to analyze their Fitbit data and do whatever they want with it! Currently, fitbitr includes methods for pulling data on activity, sleep, and heart rate, but this list is likely to grow in the future as the package gains more traction and more requests for new methods to be implemented come in. You can find details on the Fitbit API at <https://dev.fitbit.com/build/reference/web-api/>.
This package provides functions and datasets from the book "Forest Analytics with R".
This package provides core functions and utilities for packages and other code developed by Jordan Mark Barbone.
This package provides a suite of methods for detecting influential subjects in longitudinal datasets, particularly when observations occur at irregular time points. The methods identify individuals whose response trajectories deviate significantly from the population pattern, enabling detection of anomalies or subjects exerting undue influence on model outcomes.
Wrapper functions around the Facebook Marketing API to create, read, update and delete custom audiences, images, campaigns, ad sets, ads and related content.
This package provides a collection of methods for modeling time-to-event data using both functional and scalar predictors. It implements functional data analysis techniques for estimation and inference, allowing researchers to assess the impact of functional covariates on survival outcomes, including time-to-single event and recurrent event outcomes.
Several generalized / directional Fixed Sequence Multiple Testing Procedures (FSMTPs) are developed for testing a sequence of pre-ordered hypotheses while controlling the FWER, FDR and Directional Error (mdFWER). All three FWER controlling generalized FSMTPs are designed under arbitrary dependence, which allow any number of acceptances. Two FDR controlling generalized FSMTPs are respectively designed under arbitrary dependence and independence, which allow more but a given number of acceptances. Two mdFWER controlling directional FSMTPs are respectively designed under arbitrary dependence and independence, which can also make directional decisions based on the signs of the test statistics. The main functions for each proposed generalized / directional FSMTPs are designed to calculate adjusted p-values and critical values, respectively. For users convenience, the functions also provide the output option for printing decision rules.
This package provides a series of utility functions to help with reshaping hierarchy of data tree, and reform the structure of data tree.
This package provides an interface to the FORCIS database (Chaabane et al. (2024) <doi:10.5281/zenodo.7390791>) on global foraminifera distribution. This package allows to download and to handle FORCIS data. It is part of the FRB-CESAB working group FORCIS. <https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/forcis/>.
Implementation of a simple algorithm designed for online multivariate changepoint detection of a mean in sparse changepoint settings. The algorithm is based on a modified cusum statistic and guarantees control of the type I error on any false discoveries, while featuring O(1) time and O(1) memory updates per series as well as a proven detection delay.
Fits the lifespan datasets of biological systems such as yeast, fruit flies, and other similar biological units with well-known finite mixture models introduced by Farewell V. (1982) <doi:10.2307/2529885> and Al-Hussaini et al. (2000) <doi:10.1080/00949650008812033>. Estimates parameter space fitting of a lifespan dataset with finite mixtures of parametric distributions. Computes the following tasks; 1) Estimates parameter space of the finite mixture model by implementing the expectation maximization (EM) algorithm. 2) Finds a sequence of four goodness-of-fit measures consist of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (KS), and log-likelihood (log-likelihood) statistics. 3)The initial values is determined by k-means clustering.
This is a collection of R games and other funny stuff, such as the classic Mine sweeper and sliding puzzles.
FastGit <https://doc.fastgit.org/> works like a mirror of GitHub to make significant acceleration. fgitR is a package to do git operation with FastGit automatically.