Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Analyse light spectra for visual and non-visual (often called melanopic) needs, wrapped up in a Shiny App. Spectran allows for the import of spectra in various CSV forms but also provides a wide range of example spectra and even the creation of own spectral power distributions. The goal of the app is to provide easy access and a visual overview of the spectral calculations underlying common parameters used in the field. It is thus ideal for educational purposes or the creation of presentation ready graphs in lighting research and application. Spectran uses equations and action spectra described in CIE S026 (2018) <doi:10.25039/S026.2018>, DIN/TS 5031-100 (2021) <doi:10.31030/3287213>, and ISO/CIE 23539 (2023) <doi:10.25039/IS0.CIE.23539.2023>.
This package provides tools to simulate multi-omics datasets with predefined signal structures. The generated data can be used for testing, validating, and benchmarking integrative analysis methods such as factor models and clustering approaches. This version includes enhanced signal customization, visualization tools (scatter, histogram, 3D), MOFA-based analysis pipelines, PowerPoint export, and statistical profiling of datasets. Designed for both method development and teaching, SUMO supports real and synthetic data pipelines with interpretable outputs. Tini, Giulia, et al (2019) <doi:10.1093/bib/bbx167>.
This package provides functionality for analytically calculating parameters (via the InteractionPoweR package) useful for simulation of moderated multiple regression, based on the correlations among the predictors and outcome and the reliability of predictors.
Quantify stratigraphic disorder using the metrics defined by Burgess (2016) <doi:10.2110/jsr.2016.10>. Contains a range of utility tools to construct and manipulate stratigraphic columns.
This package implements a suite of sensitivity analysis tools that extends the traditional omitted variable bias framework and makes it easier to understand the impact of omitted variables in regression models, as discussed in Cinelli, C. and Hazlett, C. (2020), "Making Sense of Sensitivity: Extending Omitted Variable Bias." Journal of the Royal Statistical Society, Series B (Statistical Methodology) <doi:10.1111/rssb.12348>.
The stochastic (also called on-line) version of the Self-Organising Map (SOM) algorithm is provided. Different versions of the algorithm are implemented, for numeric and relational data and for contingency tables as described, respectively, in Kohonen (2001) <isbn:3-540-67921-9>, Olteanu & Villa-Vialaneix (2005) <doi:10.1016/j.neucom.2013.11.047> and Cottrell et al (2004) <doi:10.1016/j.neunet.2004.07.010>. The package also contains many plotting features (to help the user interpret the results), can handle (and impute) missing values and is delivered with a graphical user interface based on shiny'.
This package provides functions for computing geographically weighted regressions are provided, based on work by Chris Brunsdon, Martin Charlton and Stewart Fotheringham.
Algorithms to compute spherical k-means partitions. Features several methods, including a genetic and a fixed-point algorithm and an interface to the CLUTO vcluster program.
Clinical Data Interchange Standards Consortium (CDISC) Standard Data Tabulation Model (SDTM) controlled terminology, 2025-03-25. Source: <https://evs.nci.nih.gov/ftp1/CDISC/SDTM/>.
Converts the dates to different SAS date formats. In SAS dates are a special case of numeric values. Each day is assigned a specific numeric value, starting from January 1, 1960. This date is assigned the date value 0, and the next date has a date value of 1 and so on. The previous days to this date are represented by -1 , -2 and so on. With this approach, SAS can represent any date in the future or any date in the past. There are many date formats used in SAS to represent date-time. Here, we try to develop functions which will convert the date to different SAS date formats.
Identifies single nucleotide variants in next-generation sequencing data by estimating their local false discovery rates. For more details, see Karimnezhad, A. and Perkins, T. J. (2024) <doi:10.1038/s41598-024-51958-z>.
Powerful graphical displays and statistical tools for structured problem solving and diagnosis. The functions of the sherlock package are especially useful for applying the process of elimination as a problem diagnosis technique. The sherlock package was designed to seamlessly work with the tidyverse set of packages and provides a collection of graphical displays built on top of the ggplot and plotly packages, such as different kinds of small multiple plots as well as helper functions such as adding reference lines, normalizing observations, reading in data or saving analysis results in an Excel file. References: David Hartshorne (2019, ISBN: 978-1-5272-5139-7). Stefan H. Steiner, R. Jock MacKay (2005, ISBN: 0873896467).
Datasets for the textbook Stat2: Modeling with Regression and ANOVA (second edition). The package also includes data for the first edition, Stat2: Building Models for a World of Data and a few functions for plotting diagnostics.
This package provides tools for analyzing and understanding the file contents of large shiny application directories. The package extracts key information about render functions, reactive functions, and their inputs from app files, organizing them into structured data frames for easy reference. This streamlines the onboarding process for new contributors and helps identify areas for optimization in complex shiny codebases with multiple files and sourcing chains.
Facilitate the evaluation of forecasts in a convenient framework based on data.table. It allows user to to check their forecasts and diagnose issues, to visualise forecasts and missing data, to transform data before scoring, to handle missing forecasts, to aggregate scores, and to visualise the results of the evaluation. The package mostly focuses on the evaluation of probabilistic forecasts and allows evaluating several different forecast types and input formats. Find more information about the package in the Vignettes as well as in the accompanying paper, <doi:10.48550/arXiv.2205.07090>.
This package implements estimation methods for shrinkage covariance matrices using user-specified covariance targets. The covariance target is a structured matrix towards which the unbiased sample covariance is shrunk, optionally incorporating prior knowledge. Shrinkage intensity is computed analytically. The method is described and applied to microarray gene expression data in Jelizarow et al. (2010) <doi:10.1093/bioinformatics/btq323>.
Identify 17 Sustainable Development Goals and associated 169 targets in text.
We propose a novel two-step procedure to combine epidemiological data obtained from diverse sources with the aim to quantify risk factors affecting the probability that an individual develops certain disease such as cancer. See Hui Huang, Xiaomei Ma, Rasmus Waagepetersen, Theodore R. Holford, Rong Wang, Harvey Risch, Lloyd Mueller & Yongtao Guan (2014) A New Estimation Approach for Combining Epidemiological Data From Multiple Sources, Journal of the American Statistical Association, 109:505, 11-23, <doi:10.1080/01621459.2013.870904>.
Adds support for R startup configuration via .Renviron.d and .Rprofile.d directories in addition to .Renviron and .Rprofile files. This makes it possible to keep private / secret environment variables separate from other environment variables. It also makes it easier to share specific startup settings by simply copying a file to a directory.
Training and validation of a custom (or data-driven) Structural Equation Models using Deep Neural Networks or Machine Learning algorithms, which extend the fitting procedures of the SEMgraph R package <doi:10.32614/CRAN.package.SEMgraph>.
This package provides an implementation of the Sparse ICA method in Wang et al. (2024) <doi:10.1080/01621459.2024.2370593> for estimating sparse independent source components of cortical surface functional MRI data, by addressing a non-smooth, non-convex optimization problem through the relax-and-split framework. This method effectively balances statistical independence and sparsity while maintaining computational efficiency.
The sinaplot is a data visualization chart suitable for plotting any single variable in a multiclass data set. It is an enhanced jitter strip chart, where the width of the jitter is controlled by the density distribution of the data within each class.
Suite of helper functions for data wrangling and visualization. The only theme for these functions is that they tend towards simple, short, and narrowly-scoped. These functions are built for tasks that often recur but are not large enough in scope to warrant an ecosystem of interdependent functions.
This package implements statistical methods for analyzing the counts of areal data, with a focus on the detection of spatial clusters and clustering. The package has a heavy emphasis on spatial scan methods, which were first introduced by Kulldorff and Nagarwalla (1995) <doi:10.1002/sim.4780140809> and Kulldorff (1997) <doi:10.1080/03610929708831995>.