Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a tool that makes estimating models in state space form a breeze. See "Time Series Analysis by State Space Methods" by Durbin and Koopman (2012, ISBN: 978-0-19-964117-8) for details about the algorithms implemented.
This package provides functions for fitting multi-state semi-Markov models to longitudinal data. A parametric maximum likelihood estimation method adapted to deal with Exponential, Weibull and Exponentiated Weibull distributions is considered. Right-censoring can be taken into account and both constant and time-varying covariates can be included using a Cox proportional model. Reference: A. Krol and P. Saint-Pierre (2015) <doi:10.18637/jss.v066.i06>.
This package performs correlation matrix segmentation and applies a test procedure to detect highly correlated regions in gene expression.
This package contains space filling based tools for machine learning and data mining. Some functions offer several computational techniques and deal with the out of memory for large big data by using the ff package.
In a scatterplot where the response variable is Gaussian, Poisson or binomial, we consider the case in which the mean function is smooth with a change-point, which is a mode, an inflection point or a jump point. The main routine estimates the mean curve and the change-point as well using shape-restricted B-splines. An optional subroutine delivering a bootstrap confidence interval for the change-point is incorporated in the main routine.
This package implements the SE-test for equivalence according to Hoffelder et al. (2015) <DOI:10.1080/10543406.2014.920344>. The SE-test for equivalence is a multivariate two-sample equivalence test. Distance measure of the test is the sum of standardized differences between the expected values or in other words: the sum of effect sizes (SE) of all components of the two multivariate samples. The test is an asymptotically valid test for normally distributed data (see Hoffelder et al.,2015). The function SE.EQ() implements the SE-test for equivalence according to Hoffelder et al. (2015). The function SE.EQ.dissolution.profiles() implements a variant of the SE-test for equivalence for similarity analyses of dissolution profiles as mentioned in Suarez-Sharp et al.(2020) <DOI:10.1208/s12248-020-00458-9>). The equivalence margin used in SE.EQ.dissolution.profiles() is analogically defined as for the T2EQ approach according to Hoffelder (2019) <DOI:10.1002/bimj.201700257>) by means of a systematic shift in location of 10 [\% of label claim] of both dissolution profile populations. SE.EQ.dissolution.profiles() checks whether the weighted mean of the differences of the expected values of both dissolution profile populations is statistically significantly smaller than 10 [\% of label claim]. The weights are built up by the inverse variances.
Create a scatter plot matrix, using `htmlwidgets` package and `d3.js`.
This package provides tools for setting up ("design"), conducting, and evaluating large-scale simulation studies with graphics and tables, including parallel computations.
Simple result caching in R based on R.cache. The global environment is not considered when caching results simplifying moving files between multiple instances of R. Relies on more base functions than R.cache (e.g. cached results are saved using saveRDS() and readRDS()).
This package implements the methodological developments found in Hermes, van Heerwaarden, and Behrouzi (2024) <doi:10.48550/arXiv.2308.04325>, and allows for the statistical modeling of multi-group rank data in combination with object variables. The package also allows for the simulation of synthetic multi-group rank data.
This package performs the change-point detection in regression coefficients of linear model by partitioning the regression coefficients into two classes of smoothness. The change-point and the regression coefficients are jointly estimated.
This package performs support vectors analysis for data sets with survival outcome. Three approaches are available in the package: The regression approach takes censoring into account when formulating the inequality constraints of the support vector problem. In the ranking approach, the inequality constraints set the objective to maximize the concordance index for comparable pairs of observations. The hybrid approach combines the regression and ranking constraints in the same model.
This package provides tools to calculate the alpha parameter of the Weibull distribution, given beta and the age-specific fertility of a species, so that the population remains stable and stationary. Methods are inspired by "Survival profiles from linear models versus Weibull models: Estimating stable and stationary population structures for Pleistocene large mammals" (Martà n-González et al. 2019) <doi:10.1016/j.jasrep.2019.03.031>.
This package provides utilities for conducting specification curve analyses (Simonsohn, Simmons & Nelson (2020, <doi: 10.1038/s41562-020-0912-z>) or multiverse analyses (Steegen, Tuerlinckx, Gelman & Vanpaemel, 2016, <doi: 10.1177/1745691616658637>) including functions to setup, run, evaluate, and plot all specifications.
This package provides a collection of highly configurable, touch-enabled knob input controls for shiny'. These components can be styled to fit in perfectly in any app, and allow users to set precise values through many input modalities. Users can touch-and-drag, click-and-drag, scroll their mouse wheel, double click, or use keyboard input.
C++ classes for sparse matrix methods including implementation of sparse LDL decomposition of symmetric matrices and solvers described by Timothy A. Davis (2016) <https://fossies.org/linux/SuiteSparse/LDL/Doc/ldl_userguide.pdf>. Provides a set of C++ classes for basic sparse matrix specification and linear algebra, and a class to implement sparse LDL decomposition and solvers. See <https://github.com/samuel-watson/SparseChol> for details.
Given a likelihood provided by the user, this package applies it to a given matrix dataset in order to find change points in the data that maximize the sum of the likelihoods of all the segments. This package provides a handful of algorithms with different time complexities and assumption compromises so the user is able to choose the best one for the problem at hand. The implementation of the segmentation algorithms in this package are based on the paper by Bruno M. de Castro, Florencia Leonardi (2018) <arXiv:1501.01756>. The Berlin weather sample dataset was provided by Deutscher Wetterdienst <https://dwd.de/>. You can find all the references in the Acknowledgments section of this package's repository via the URL below.
Implementation for sparse logistic functional principal component analysis (SLFPCA). SLFPCA is specifically developed for functional binary data, and the estimated eigenfunction can be strictly zero on some sub-intervals, which is helpful for interpretation. The crucial function of this package is SLFPCA().
This package provides functions implementing Single Source of Error state space models for purposes of time series analysis and forecasting. The package includes ADAM (Svetunkov, 2023, <https://openforecast.org/adam/>), Exponential Smoothing (Hyndman et al., 2008, <doi:10.1007/978-3-540-71918-2>), SARIMA (Svetunkov & Boylan, 2019 <doi: 10.1080/00207543.2019.1600764>), Complex Exponential Smoothing (Svetunkov & Kourentzes, 2018, <doi:10.13140/RG.2.2.24986.29123>), Simple Moving Average (Svetunkov & Petropoulos, 2018 <doi:10.1080/00207543.2017.1380326>) and several simulation functions. It also allows dealing with intermittent demand based on the iETS framework (Svetunkov & Boylan, 2019, <doi:10.13140/RG.2.2.35897.06242>).
Compute ploidy of single cells (or nuclei) based on single-cell (or single-nucleus) ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) data <https://github.com/fumi-github/scPloidy>.
This package provides indices such as Manly's alpha, foraging ratio, and Ivlev's selectivity to allow for analysis of dietary selectivity and preference. Can accommodate multiple experimental designs such as constant prey number of prey depletion. Please contact the package maintainer with any publications making use of this package in an effort to maintain a repository of dietary selections studies.
This package implements the methodological developments found in Hermes, van Heerwaarden, and Behrouzi (2023) <doi:10.48550/arXiv.2308.04325>, and allows for the statistical modeling of asymmetric between-location effects, as well as within-location effects using spatial autoregressive graphical models. The package allows for the generation of spatial weight matrices to capture asymmetric effects for strip-type intercropping designs, although it can handle any type of spatial data commonly found in other sciences.
This package provides functions to calculate EBLUPs (Empirical Best Linear Unbiased Predictor) estimators and their MSEs (Mean Squared Errors). Estimators are based on an area-level linear mixed model introduced by Rao and Yu (1994) <doi:10.2307/3315407>. The REML (Residual Maximum Likelihood) method is used for fitting the model.
Used for creating swimmers plots with functions to customize the bars, add points, add lines, add text, and add arrows.