Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Manages comparison of MCMC performance metrics from multiple MCMC algorithms. These may come from different MCMC configurations using the nimble package or from other packages. Plug-ins for JAGS via rjags and Stan via rstan are provided. It is possible to write plug-ins for other packages. Performance metrics are held in an MCMCresult class along with samples and timing data. It is easy to apply new performance metrics. Reports are generated as html pages with figures comparing sets of runs. It is possible to configure the html pages, including providing new figure components.
This package provides a standard test is observed on all specimens. We treat the second test (or sampled test) as being conducted on only a stratified sample of specimens. Verification Bias is this situation when the specimens for doing the second (sampled) test is not under investigator control. We treat the total sample as stratified two-phase sampling and use inverse probability weighting. We estimate diagnostic accuracy (category-specific classification probabilities; for binary tests reduces to specificity and sensitivity, and also predictive values) and agreement statistics (percent agreement, percent agreement by category, Kappa (unweighted), Kappa (quadratic weighted) and symmetry tests (reduces to McNemar's test for binary tests)). See: Katki HA, Li Y, Edelstein DW, Castle PE. Estimating the agreement and diagnostic accuracy of two diagnostic tests when one test is conducted on only a subsample of specimens. Stat Med. 2012 Feb 28; 31(5) <doi:10.1002/sim.4422>.
This package provides tools to measure connection and independence between variables without relying on linear models. Includes functions to compute Eta squared, Chi-squared, and Cramer V. The main advantage of this package is that it works without requiring parametric assumptions. The methods implemented are based on educational material and statistical decomposition techniques, not directly on previously published software or articles.
Utilities that support the usage of pyDarwin (<https://certara.github.io/pyDarwin/>) for ease of setup and execution of a machine learning based pharmacometric model search with Certara's Non-Linear Mixed Effects (NLME) modeling engine.
Can be useful for finding associations among different positions in a position-wise aligned sequence dataset. The approach adopted for finding associations among positions is based on the latent multivariate normal distribution.
Implementation of a procedure---Domingue (2012) <https://eric.ed.gov/?id=ED548657>, Domingue (2014) <doi:10.1007/s11336-013-9342-4>; see also Karabatsos (2001) <https://psycnet.apa.org/record/2002-01665-005> and Kyngdon (2011) <doi:10.1348/2044-8317.002004>---to test the single and double cancellation axioms of conjoint measure in data that is dichotomously coded and measured with error.
Encode and decode c-squares, from and to simple feature (sf) or spatiotemporal arrays (stars) objects. Use c-squares codes to quickly join or query spatial data.
Method for visualizing proportions between objects of different sizes. The proportions are drawn as circles with different diameters, which makes them ideal for visualizing proportions between planets.
The Concordance Test is a non-parametric method for testing whether two o more samples originate from the same distribution. It extends the Kendall Tau correlation coefficient when there are only two groups. For details, see Alcaraz J., Anton-Sanchez L., Monge J.F. (2022) The Concordance Test, an Alternative to Kruskal-Wallis Based on the Kendall-tau Distance: An R Package. The R Journal 14, 26â 53 <doi:10.32614/RJ-2022-039>.
Computes community climate statistics for volume and mismatch using species climate niches either unscaled or scaled relative to a regional species pool. These statistics can be used to describe biogeographic patterns and infer community assembly processes. Includes a vignette outlining usage.
This package provides tools to visualize the results of a classification or a regression. The graphical displays include stacked plots, silhouette plots, quasi residual plots, class maps, predictions plots, and predictions correlation plots. Implements the techniques described and illustrated in Raymaekers J., Rousseeuw P.J., Hubert M. (2022). Class maps for visualizing classification results. \emphTechnometrics, 64(2), 151â 165. \doi10.1080/00401706.2021.1927849 (open access), Raymaekers J., Rousseeuw P.J.(2022). Silhouettes and quasi residual plots for neural nets and tree-based classifiers. \emphJournal of Computational and Graphical Statistics, 31(4), 1332â 1343. \doi10.1080/10618600.2022.2050249, and Rousseeuw, P.J. (2025). Explainable Linear and Generalized Linear Models by the Predictions Plot. <doi:10.48550/arXiv.2412.16980> (open access). Examples can be found in the vignettes: "Discriminant_analysis_examples","K_nearest_neighbors_examples", "Support_vector_machine_examples", "Rpart_examples", "Random_forest_examples", "Neural_net_examples", and "predsplot_examples".
Reads and writes CSV with selected conventions. Uses the same generic function for reading and writing to promote consistent formats.
Various estimators of causal effects based on inverse probability weighting, doubly robust estimation, and double machine learning. Specifically, the package includes methods for estimating average treatment effects, direct and indirect effects in causal mediation analysis, and dynamic treatment effects. The models refer to studies of Froelich (2007) <doi:10.1016/j.jeconom.2006.06.004>, Huber (2012) <doi:10.3102/1076998611411917>, Huber (2014) <doi:10.1080/07474938.2013.806197>, Huber (2014) <doi:10.1002/jae.2341>, Froelich and Huber (2017) <doi:10.1111/rssb.12232>, Hsu, Huber, Lee, and Lettry (2020) <doi:10.1002/jae.2765>, and others.
Filtering, also known as gating, of flow cytometry samples using the curvHDR method, which is described in Naumann, U., Luta, G. and Wand, M.P. (2010) <DOI:10.1186/1471-2105-11-44>.
Computes p-value according to the CRT using the HierNet test statistic. For more details, see Ham, Imai, Janson (2022) "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" <arXiv:2201.08343>.
Calculates centrality indices additional to the igraph package centrality functions.
This package implements convex regression with interpretable sharp partitions (CRISP), which considers the problem of predicting an outcome variable on the basis of two covariates, using an interpretable yet non-additive model. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. More details are provided in Petersen, A., Simon, N., and Witten, D. (2016). Convex Regression with Interpretable Sharp Partitions. Journal of Machine Learning Research, 17(94): 1-31 <http://jmlr.org/papers/volume17/15-344/15-344.pdf>.
This package provides functions for implementing the novel algorithm CASCORE, which is designed to detect latent community structure in graphs with node covariates. This algorithm can handle models such as the covariate-assisted degree corrected stochastic block model (CADCSBM). CASCORE specifically addresses the disagreement between the community structure inferred from the adjacency information and the community structure inferred from the covariate information. For more detailed information, please refer to the reference paper: Yaofang Hu and Wanjie Wang (2022) <arXiv:2306.15616>. In addition to CASCORE, this package includes several classical community detection algorithms that are compared to CASCORE in our paper. These algorithms are: Spectral Clustering On Ratios-of Eigenvectors (SCORE), normalized PCA, ordinary PCA, network-based clustering, covariates-based clustering and covariate-assisted spectral clustering (CASC). By providing these additional algorithms, the package enables users to compare their performance with CASCORE in community detection tasks.
Includes commands for bootstrapping and permutation tests, a command for created grouped bar plots, and a demo of the quantile-normal plot for data drawn from different distributions.
Several functions are available for calculating the most widely used effect sizes (ES), along with their variances, confidence intervals and p-values. The output includes ES's of d (mean difference), g (unbiased estimate of d), r (correlation coefficient), z (Fisher's z), and OR (odds ratio and log odds ratio). In addition, NNT (number needed to treat), U3, CLES (Common Language Effect Size) and Cliff's Delta are computed. This package uses recommended formulas as described in The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, & Valentine, 2009). A free web application is available at <https://acdelre.github.io/apps/compute_es/>.
This package provides a lightweight data validation and testing toolkit for R. Its guiding philosophy is that adding code-based data checks to users existing workflow should be both quick and intuitive. The suite of functions included therefore mirror the common data checks many users already perform by hand or by eye. Additionally, the checkthat package is optimized to work within tidyverse data manipulation pipelines.
Computes maximum response from Cardiac Magnetic Resonance Images using spatial and voxel wise spline based Bayesian model. This is an implementation of the methods described in Schmid (2011) <doi:10.1109/TMI.2011.2109733> "Voxel-Based Adaptive Spatio-Temporal Modelling of Perfusion Cardiovascular MRI". IEEE TMI 30(7) p. 1305 - 1313.
This package provides Python'-style list comprehensions. List comprehension expressions use usual loops (for(), while() and repeat()) and usual if() as list producers. In many cases it gives more concise notation than standard "*apply + filter" strategy.
Allow to run Cppcheck (<https://cppcheck.sourceforge.io/>) on C and C++ files with a R command or a RStudio addin. The report appears in the RStudio viewer pane as a formatted HTML file. It is also possible to get this report with a shiny application. Cppcheck can spot many error types and it can also give some recommendations on the code.