Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The main aim is to further facilitate the creation of exercises based on the package exams by Grün, B., and Zeileis, A. (2009) <doi:10.18637/jss.v029.i10>. Creating effective student exercises involves challenges such as creating appropriate data sets and ensuring access to intermediate values for accurate explanation of solutions. The functionality includes the generation of univariate and bivariate data including simple time series, functions for theoretical distributions and their approximation, statistical and mathematical calculations for tasks in basic statistics courses as well as general tasks such as string manipulation, LaTeX/HTML formatting and the editing of XML task files for Moodle'.
Predicts enrollment and events at the design or analysis stage using specified enrollment and time-to-event models through simulations.
This package provides functions for setting up and analyzing event history data.
Fits dose-response models using an evolutionary algorithm to estimate the model parameters. The procedure currently can fit 3-parameter, 4-parameter, and 5-parameter log-logistic models as well as exponential models. Functions are also provided to plot, make predictions, and calculate confidence intervals for the resulting models. For details see "Nonlinear Dose-response Modeling of High-Throughput Screening Data Using an Evolutionary Algorithm", Ma, J., Bair, E., Motsinger-Reif, A.; Dose-Response 18(2):1559325820926734 (2020) <doi:10.1177/1559325820926734>.
Estimation of fully and partially observed Exponential-Family Random Network Models (ERNM). Exponential-family Random Graph Models (ERGM) and Gibbs Fields are special cases of ERNMs and can also be estimated with the package. Please cite Fellows and Handcock (2012), "Exponential-family Random Network Models" available at <doi:10.48550/arXiv.1208.0121>.
This package provides computational methods for detecting adverse high-order drug interactions from individual case safety reports using statistical techniques, allowing the exploration of higher-order interactions among drug cocktails.
This package provides a set of functions for organising and analysing datasets from experiments run using Eyelink eye-trackers. Organising functions help to clean and prepare eye-tracking datasets for analysis, and mark up key events such as display changes and responses made by participants. Analysing functions help to create means for a wide range of standard measures (such as mean fixation durations'), which can then be fed into the appropriate statistical analyses and graphing packages as necessary.
For multiscale analysis, this package carries out empirical mode decomposition and Hilbert spectral analysis. For usage of EMD, see Kim and Oh, 2009 (Kim, D and Oh, H.-S. (2009) EMD: A Package for Empirical Mode Decomposition and Hilbert Spectrum, The R Journal, 1, 40-46).
Method and tool for generating time series forecasts using an ensemble wavelet-based auto-regressive neural network architecture. This method provides additional support of exogenous variables and also generates confidence interval. This package provides EWNet model for time series forecasting based on the algorithm by Panja, et al. (2022) and Panja, et al. (2023) <arXiv:2206.10696> <doi:10.1016/j.chaos.2023.113124>.
End-member modelling analysis of grain-size data is an approach to unmix a data set's underlying distributions and their contribution to the data set. EMMAgeo provides deterministic and robust protocols for that purpose.
Framework for building evolutionary algorithms for both single- and multi-objective continuous or discrete optimization problems. A set of predefined evolutionary building blocks and operators is included. Moreover, the user can easily set up custom objective functions, operators, building blocks and representations sticking to few conventions. The package allows both a black-box approach for standard tasks (plug-and-play style) and a much more flexible white-box approach where the evolutionary cycle is written by hand.
This package provides a comprehensive toolkit for single-cell annotation with the CellMarker2.0 database (see Xia Li, Peng Wang, Yunpeng Zhang (2023) <doi: 10.1093/nar/gkac947>). Streamlines biological label assignment in single-cell RNA-seq data and facilitates transcriptomic analysis, including preparation of TCGA<https://portal.gdc.cancer.gov/> and GEO<https://www.ncbi.nlm.nih.gov/geo/> datasets, differential expression analysis and visualization of enrichment analysis results. Additional utility functions support various bioinformatics workflows. See Wei Cui (2024) <doi: 10.1101/2024.09.14.609619> for more details.
Package implements entropy balancing, a data preprocessing procedure described in Hainmueller (2008, <doi:10.1093/pan/mpr025>) that allows users to reweight a dataset such that the covariate distributions in the reweighted data satisfy a set of user specified moment conditions. This can be useful to create balanced samples in observational studies with a binary treatment where the control group data can be reweighted to match the covariate moments in the treatment group. Entropy balancing can also be used to reweight a survey sample to known characteristics from a target population.
This package provides a consistent, unified and extensible framework for estimation of parameters for probability distributions, including parameter estimation procedures that allow for weighted samples; the current set of distributions included are: the standard beta, The four-parameter beta, Burr, gamma, Gumbel, Johnson SB and SU, Laplace, logistic, normal, symmetric truncated normal, truncated normal, symmetric-reflected truncated beta, standard symmetric-reflected truncated beta, triangular, uniform, and Weibull distributions; decision criteria and selections based on these decision criteria.
For multiscale analysis, this package carries out ensemble patch transform, its visualization and multiscale decomposition. The detailed procedure is described in Kim et al. (2020), and Oh and Kim (2020). D. Kim, G. Choi, H.-S. Oh, Ensemble patch transformation: a flexible framework for decomposition and filtering of signal, EURASIP Journal on Advances in Signal Processing 30 (2020) 1-27 <doi:10.1186/s13634-020-00690-7>. H.-S. Oh, D. Kim, Image decomposition by bidimensional ensemble patch transform, Pattern Recognition Letters 135 (2020) 173-179 <doi:10.1016/j.patrec.2020.03.029>.
Fits a state-space mass-balance model for marine ecosystems, which implements dynamics derived from Ecopath with Ecosim ('EwE') <https://ecopath.org/> while fitting to time-series of fishery catch, biomass indices, age-composition samples, and weight-at-age data. Ecostate fits biological parameters (e.g., equilibrium mass) and measurement parameters (e.g., catchability coefficients) jointly with residual variation in process errors, and can include Bayesian priors for parameters.
Empirical likelihood ratio tests for the Yang and Prentice (short/long term hazards ratio) model. Empirical likelihood tests within a Cox model, for parameters defined via both baseline hazard function and regression parameters.
Training and predict functions for Single Hidden-layer Feedforward Neural Networks (SLFN) using the Extreme Learning Machine (ELM) algorithm. The ELM algorithm differs from the traditional gradient-based algorithms for very short training times (it doesn't need any iterative tuning, this makes learning time very fast) and there is no need to set any other parameters like learning rate, momentum, epochs, etc. This is a reimplementation of the elmNN package using RcppArmadillo after the elmNN package was archived. For more information, see "Extreme learning machine: Theory and applications" by Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew (2006), Elsevier B.V, <doi:10.1016/j.neucom.2005.12.126>.
The confusion matrix (CM) is used to get a classifier's evaluation measure in order to select a method among many. A stochastic matrix and its transformation are computed from the CM. The eigenvalues of the transformed symmetric matrix are used to get an entropy which appears to be a good evaluation measure. Many other measures, commonly used, are provided for comparison purpose.
This package provides a small collection of datasets supporting Pearson correlation and linear regression analysis. It includes the precomputed dataset sos100', with integer values summing to zero and squared sum equal to 100. For other values of n and user-defined parameters, the sos() function from the exams.forge package can be used to generate datasets on the fly. In addition, the package contains around 500 german R Markdown exercises that illustrate the usage of exams.forge commands.
EM algorithms and several efficient initialization methods for model-based clustering of finite mixture Gaussian distribution with unstructured dispersion in both of unsupervised and semi-supervised learning.
This package provides a meta-package that installs and loads a set of packages from easystats ecosystem in a single step. This collection of packages provide a unifying and consistent framework for statistical modeling, visualization, and reporting. Additionally, it provides articles targeted at instructors for teaching easystats', and a dashboard targeted at new R users for easily conducting statistical analysis by accessing summary results, model fit indices, and visualizations with minimal programming.
Process and analyze electronic health record (EHR) data. The EHR package provides modules to perform diverse medication-related studies using data from EHR databases. Especially, the package includes modules to perform pharmacokinetic/pharmacodynamic (PK/PD) analyses using EHRs, as outlined in Choi, Beck, McNeer, Weeks, Williams, James, Niu, Abou-Khalil, Birdwell, Roden, Stein, Bejan, Denny, and Van Driest (2020) <doi:10.1002/cpt.1787>. Additional modules will be added in future. In addition, this package provides various functions useful to perform Phenome Wide Association Study (PheWAS) to explore associations between drug exposure and phenotypes obtained from EHR data, as outlined in Choi, Carroll, Beck, Mosley, Roden, Denny, and Van Driest (2018) <doi:10.1093/bioinformatics/bty306>.
This package provides functions that support estimating, assessing and mapping regional disaggregated indicators. So far, estimation methods comprise direct estimation, the model-based unit-level approach Empirical Best Prediction (see "Small area estimation of poverty indicators" by Molina and Rao (2010) <doi:10.1002/cjs.10051>), the area-level model (see "Estimates of income for small places: An application of James-Stein procedures to Census Data" by Fay and Herriot (1979) <doi:10.1080/01621459.1979.10482505>) and various extensions of it (adjusted variance estimation methods, log and arcsin transformation, spatial, robust and measurement error models), as well as their precision estimates. The assessment of the used model is supported by a summary and diagnostic plots. For a suitable presentation of estimates, map plots can be easily created. Furthermore, results can easily be exported to excel. For a detailed description of the package and the methods used see "The R Package emdi for Estimating and Mapping Regionally Disaggregated Indicators" by Kreutzmann et al. (2019) <doi:10.18637/jss.v091.i07> and the second package vignette "A Framework for Producing Small Area Estimates Based on Area-Level Models in R".