Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a tool to operate a batch of univariate or multivariate Cox models and return tidy result.
Split experiment sentences by different experiment design given by the user and the result can be used in E-prime (<https://pstnet.com/products/e-prime/>).
This package provides a function (echo_find()) designed to find rhythms from data using extended harmonic oscillators. For more information, see H. De los Santos et al. (2020) <doi:10.1093/bioinformatics/btz617> .
Perform a Bayesian estimation of the exploratory deterministic input, noisy and gate (EDINA) cognitive diagnostic model described by Chen et al. (2018) <doi:10.1007/s11336-017-9579-4>.
Import SPSS data, handle and change SPSS meta data, store and access large hierarchical data in SQLite data bases.
This package provides a light, simple tool for sending emails with minimal dependencies.
This package provides functions for evaluating and visualizing ecological assessment procedures for surface waters containing physical, chemical and biological assessments in the form of value functions.
This package provides statistical tests and graphics for assessing tests of equivalence. Such tests have similarity as the alternative hypothesis instead of the null. Sample data sets are included.
This package performs analysis of regression in simple designs with quantitative treatments, including mixed models and non linear models.
This package provides a set of methods to access and parse live filing information from the U.S. Securities and Exchange Commission (SEC - <https://www.sec.gov/>) including company and fund filings along with all associated metadata.
Automation of the item selection processes for Rasch scales by means of exhaustive search for suitable Rasch models (dichotomous, partial credit, rating-scale) in a list of item-combinations. The item-combinations to test can be either all possible combinations or item-combinations can be defined by several rules (forced inclusion of specific items, exclusion of combinations, minimum/maximum items of a subset of items). Tests for model fit and item fit include ordering of the thresholds, item fit-indices, likelihood ratio test, Martin-Löf test, Wald-like test, person-item distribution, person separation index, principal components of Rasch residuals, empirical representation of all raw scores or Rasch trees for detecting differential item functioning. The tests, their ordering and their parameters can be defined by the user. For parameter estimation and model tests, functions of the packages eRm', psychotools or pairwise can be used.
Use R to interface with the ETRADE API <https://developer.etrade.com/home>. Functions include authentication, trading, quote requests, account information, and option chains. A user will need an ETRADE brokerage account and ETRADE API approval. See README for authentication process and examples.
This package contains all the datasets that were used in Social Science Experiments: A Hands-On Introduction and in its R Companion. Relevant materials can be found at <https://osf.io/b78je>.
An alternative to Exploratory Factor Analysis (EFA) for metrical data in R. Drawing on characteristics of classical test theory, Exploratory Likert Scaling (ELiS) supports the user exploring multiple one-dimensional data structures. In common research practice, however, EFA remains the go-to method to uncover the (underlying) structure of a data set. Orthogonal dimensions and the potential of overextraction are often accepted as side effects. As described in Müller-Schneider (2001) <doi:10.1515/zfsoz-2001-0404>), ELiS confronts these problems. As a result, elisr provides the platform to fully exploit the exploratory potential of the multiple scaling approach itself.
The purpose of this library is to compute the optimal charging cost function for a electric vehicle (EV). It is well known that the charging function of a EV is a concave function that can be approximated by a piece-wise linear function, so bigger the state of charge, slower the charging process is. Moreover, the other important function is the one that gives the electricity price. This function is usually step-wise, since depending on the time of the day, the price of the electricity is different. Then, the problem of charging an EV to a certain state of charge is not trivial. This library implements an algorithm to compute the optimal charging cost function, that is, it plots for a given state of charge r (between 0 and 1) the minimum cost we need to pay in order to charge the EV to that state of charge r. The details of the algorithm are described in González-Rodrà guez et at (2023) <https://inria.hal.science/hal-04362876v1>.
Processing tools to create emissions for use in numerical air quality models. Emissions can be calculated both using emission factors and activity data (Schuch et al 2018) <doi:10.21105/joss.00662> or using pollutant inventories (Schuch et al., 2018) <doi:10.30564/jasr.v1i1.347>. Functions to process individual point emissions, line emissions and area emissions of pollutants are available as well as methods to incorporate alternative data for Spatial distribution of emissions such as satellite images (Gavidia-Calderon et. al, 2018) <doi:10.1016/j.atmosenv.2018.09.026> or openstreetmap data (Andrade et al, 2015) <doi:10.3389/fenvs.2015.00009>.
This package provides functions to extract and process data from the FDA Adverse Event Reporting System (FAERS). It facilitates the conversion of raw FAERS data published after 2014Q3 into structured formats for analysis. See Yang et al. (2022) <doi:10.3389/fphar.2021.772768> for related information.
Access data related to the European union from GISCO <https://ec.europa.eu/eurostat/web/gisco>, the Geographic Information System of the European Commission, via its rest API at <https://gisco-services.ec.europa.eu>. This package tries to make it easier to get these data into R.
Gene information from Ensembl genome builds GRCh38.p14 and GRCh37.p13 to use with the topr package. The datasets were originally downloaded from <https://ftp.ensembl.org/pub/current/gtf/homo_sapiens/Homo_sapiens.GRCh38.111.gtf.gz> and <https://ftp.ensembl.org/pub/grch37/current/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.gtf.gz> and converted into the format required by the topr package. See <https://github.com/totajuliusd/topr?tab=readme-ov-file#how-to-use-topr-with-other-species-than-human> to see the required format.
Software of esDesign is developed to implement the adaptive enrichment designs with sample size re-estimation presented in Lin et al. (2021) <doi: 10.1016/j.cct.2020.106216>. In details, three-proposed trial designs are provided, including the AED1-SSR (or ES1-SSR), AED2-SSR (or ES2-SSR) and AED3-SSR (or ES3-SSR). In addition, this package also contains several widely used adaptive designs, such as the Marker Sequential Test (MaST) design proposed Freidlin et al. (2014) <doi:10.1177/1740774513503739>, the adaptive enrichment designs without early stopping (AED or ES), the sample size re-estimation procedure (SSR) based on the conditional power proposed by Proschan and Hunsberger (1995), and some useful functions. In details, we can calculate the futility and/or efficacy stopping boundaries, the sample size required, calibrate the value of the threshold of the difference between subgroup-specific test statistics, conduct the simulation studies in AED, SSR, AED1-SSR, AED2-SSR and AED3-SSR.
Tool for Environment-Wide Association Studies (EnvWAS / EWAS) which are repeated analysis. It includes three functions. One function for linear regression, a second for logistic regression and a last one for generalized linear models.
Ensemble correlation-based low-rank matrix completion method (ECLRMC) is an extension to the LRMC based methods. Traditionally, the LRMC based methods give identical importance to the whole data which results in emphasizing on the commonality of the data and overlooking the subtle but crucial differences. This method aims to overcome the equality assumption problem that exists in the current LRMS based methods. Ensemble correlation-based low-rank matrix completion (ECLRMC) takes consideration of the specific characteristic of each sample and performs LRMC on the set of samples with a strong correlation. It uses an ensemble learning method to improve the imputation performance. Since each sample is analyzed independently this method can be parallelized by distributing imputation across many computation units or GPU platforms. This package provides three different methods (LRMC, CLRMC and ECLRMC) for data imputation. There is also an NRMS function for evaluating the result. Chen, Xiaobo, et al (2017) <doi:10.1016/j.knosys.2017.06.010>.
This package provides tools for simulating draws from continuous time processes with well-defined exponential family random graph (ERGM) equilibria, i.e. ERGM generating processes (EGPs). A number of EGPs are supported, including the families identified in Butts (2023) <doi:10.1080/0022250X.2023.2180001>, as are functions for hazard calculation and timing calibration.
Simulation and estimation of Exponential Random Graph Models (ERGMs) for small networks using exact statistics as shown in Vega Yon et al. (2020) <DOI:10.1016/j.socnet.2020.07.005>. As a difference from the ergm package, ergmito circumvents using Markov-Chain Maximum Likelihood Estimator (MC-MLE) and instead uses Maximum Likelihood Estimator (MLE) to fit ERGMs for small networks. As exhaustive enumeration is computationally feasible for small networks, this R package takes advantage of this and provides tools for calculating likelihood functions, and other relevant functions, directly, meaning that in many cases both estimation and simulation of ERGMs for small networks can be faster and more accurate than simulation-based algorithms.