Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
For emulating multifidelity computer models. The major methods include univariate autoregressive cokriging and multivariate autoregressive cokriging. The autoregressive cokriging methods are implemented for both hierarchically nested design and non-nested design. For hierarchically nested design, the model parameters are estimated via standard optimization algorithms; For non-nested design, the model parameters are estimated via Monte Carlo expectation-maximization (MCEM) algorithms. In both cases, the priors are chosen such that the posterior distributions are proper. Notice that the uniform priors on range parameters in the correlation function lead to improper posteriors. This should be avoided when Bayesian analysis is adopted. The development of objective priors for autoregressive cokriging models can be found in Pulong Ma (2020) <DOI:10.1137/19M1289893>. The development of the multivariate autoregressive cokriging models with possibly non-nested design can be found in Pulong Ma, Georgios Karagiannis, Bledar A Konomi, Taylor G Asher, Gabriel R Toro, and Andrew T Cox (2019) <arXiv:1909.01836>.
This package provides tools for designing and analyzing Acceptance Sampling plans. Supports both Attributes Sampling (Binomial and Poisson distributions) and Variables Sampling (Normal and Beta distributions), enabling quality control for fractional and compositional data. Uses nonlinear programming for sampling plan optimization, minimizing sample size while controlling producer's and consumer's risks. Operating Characteristic curves are available for plan visualization.
Auto-GO is a framework that enables automated, high quality Gene Ontology enrichment analysis visualizations. It also features a handy wrapper for Differential Expression analysis around the DESeq2 package described in Love et al. (2014) <doi:10.1186/s13059-014-0550-8>. The whole framework is structured in different, independent functions, in order to let the user decide which steps of the analysis to perform and which plot to produce.
The aligned rank transform for nonparametric factorial ANOVAs as described by Wobbrock, Findlater, Gergle, and Higgins (2011) <doi:10.1145/1978942.1978963>. Also supports aligned rank transform contrasts as described by Elkin, Kay, Higgins, and Wobbrock (2021) <doi:10.1145/3472749.3474784>.
An iterative implementation of a recursive binary partitioning algorithm to measure pairwise dependence with a modular design that allows user specification of the splitting logic and stop criteria. Helper functions provide suggested versions of both and support visualization and the computation of summary statistics on final binnings. For a thorough discussion and demonstration of the algorithm, see Salahub and Oldford (2025) <doi:10.1002/sam.70042>.
This package provides a variable selection method using B-Splines in multivariate nOnparametric Regression models Based on partial dErivatives Regularization (ABSORBER) implements a novel variable selection method in a nonlinear multivariate model using B-splines. For further details we refer the reader to the paper Savino, M. E. and Lévy-Leduc, C. (2024), <https://hal.science/hal-04434820>.
Extends package arules with various visualization techniques for association rules and itemsets. The package also includes several interactive visualizations for rule exploration. Michael Hahsler (2017) <doi:10.32614/RJ-2017-047>.
This is an implementation of the Generalized Discrimination Score (also known as Two Alternatives Forced Choice Score, 2AFC) for various representations of forecasts and verifying observations. The Generalized Discrimination Score is a generic forecast verification framework which can be applied to any of the following verification contexts: dichotomous, polychotomous (ordinal and nominal), continuous, probabilistic, and ensemble. A comprehensive description of the Generalized Discrimination Score, including all equations used in this package, is provided by Mason and Weigel (2009) <doi:10.1175/MWR-D-10-05069.1>.
This package creates interactive Venn diagrams using the amCharts5 library for JavaScript'. They can be used directly from the R console, from RStudio', in shiny applications, and in rmarkdown documents.
R wrapper around the argon HTML library. More at <https://demos.creative-tim.com/argon-design-system/>.
This package provides a tool that improves the prediction performance of multilevel regression with post-stratification (MrP) by combining a number of machine learning methods. For information on the method, please refer to Broniecki, Wüest, Leemann (2020) Improving Multilevel Regression with Post-Stratification Through Machine Learning (autoMrP) in the Journal of Politics'. Final pre-print version: <https://lucasleemann.files.wordpress.com/2020/07/automrp-r2pa.pdf>.
This package provides a simple client package for the Amazon Web Services ('AWS') Lambda API <https://aws.amazon.com/lambda/>.
Exploration of Weather Research & Forecasting ('WRF') Model data of Servicio Meteorologico Nacional (SMN) from Amazon Web Services (<https://registry.opendata.aws/smn-ar-wrf-dataset/>) cloud. The package provides the possibility of data downloading, processing and correction methods. It also has map management and series exploration of available meteorological variables of WRF forecast.
This package performs AnchorRegression proposed by Rothenhäusler et al. 2020. The code is adapted from the original paper repository. (<https://github.com/rothenhaeusler/anchor-regression>) The code was developed independently from the authors of the paper.
This package provides functions for processing and analyzing survey data from the All of Us Social Determinants of Health (AOUSDOH) program, including tools for calculating health and well-being scores, recoding variables, and simplifying survey data analysis. For more details see - Koleck TA, Dreisbach C, Zhang C, Grayson S, Lor M, Deng Z, Conway A, Higgins PDR, Bakken S (2024) <doi:10.1093/jamia/ocae214>.
This package implements discrete time deterministic and stochastic age-structured population dynamics models described in Erguler and others (2016) <doi:10.1371/journal.pone.0149282> and Erguler and others (2017) <doi:10.1371/journal.pone.0174293>.
Create videos from R Markdown documents, or images and audio files. These images can come from image files or HTML slides, and the audio files can be provided by the user or computer voice narration can be created using Amazon Polly'. The purpose of this package is to allow users to create accessible, translatable, and reproducible lecture videos. See <https://aws.amazon.com/polly/> for more information.
Created to host raw accelerometry data sets and their derivatives which are used in the corresponding adept package.
Epidemiological population dynamics models traditionally define a pathogen's virulence as the increase in the per capita rate of mortality of infected hosts due to infection. This package provides functions allowing virulence to be estimated by maximum likelihood techniques. The approach is based on the analysis of relative survival comparing survival in matching cohorts of infected vs. uninfected hosts (Agnew 2019) <doi:10.1101/530709>.
For instructions, check <https://github.com/Hzhang-ouce/ARTofR>. This is a wrapper of bannerCommenter', for inserting neat comments, headers and dividers.
Convert populations into integer number of seats for legislative bodies. Implements apportionment methods used historically and currently in the United States for reapportionment after the Census, as described in <https://www.census.gov/history/www/reference/apportionment/methods_of_apportionment.html>.
This package implements a Bayesian adaptive graphical lasso data-augmented block Gibbs sampler. The sampler simulates the posterior distribution of precision matrices of a Gaussian Graphical Model. This sampler was adapted from the original MATLAB routine proposed in Wang (2012) <doi:10.1214/12-BA729>.
An interface for performing all stages of ADMIXTOOLS analyses (<https://reich.hms.harvard.edu/software>) entirely from R. Wrapper functions (D, f4, f3, etc.) completely automate the generation of intermediate configuration files, run ADMIXTOOLS programs on the command-line, and parse output files to extract values of interest. This allows users to focus on the analysis itself instead of worrying about low-level technical details. A set of complementary functions for processing and filtering of data in the EIGENSTRAT format is also provided.
This wrapper package for mgcv makes it easier to create high-performing Generalized Additive Models (GAMs). With its central function autogam(), by entering just a dataset and the name of the outcome column as inputs, AutoGAM tries to automate the procedure of configuring a highly accurate GAM which performs at reasonably high speed, even for large datasets.