Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Simulates the soil water balance (soil moisture, evapotranspiration, leakage and runoff), rainfall series by using the marked Poisson process and the vegetation growth through the normalized difference vegetation index (NDVI). Please see Souza et al. (2016) <doi:10.1002/hyp.10953>.
The goal of equatiomatic is to reduce the pain associated with writing LaTeX formulas from fitted models. The primary function of the package, extract_eq(), takes a fitted model object as its input and returns the corresponding LaTeX code for the model.
This package provides a convenient toolbox to import data exported from Electronic Data Capture (EDC) software TrialMaster'.
Use SQLite3 as a database system via a complete SQL free R interface, treating the data as if it was a single spreadsheet.
Treatments of a one-way layout, being equivalent to a control, can be selected with this package. Bonferroni adjusted "two one-sided t-tests" (TOST) and related simultaneous confidence intervals are given for both differences or ratios of means of normally distributed data. For the case of equal variances and balanced sample sizes for the treatment groups, the single-step procedure of Bofinger and Bofinger (1995) <doi:10.1111/j.2517-6161.1995.tb02058.x> can be chosen. For non-normal data, the Wilcoxon test is applied.
Package implements the EDNE-test for equivalence according to Hoffelder et al. (2015) <DOI:10.1080/10543406.2014.920344>. "EDNE" abbreviates "Euclidean Distance between the Non-standardized Expected values". The EDNE-test for equivalence is a multivariate two-sample equivalence test. Distance measure of the test is the Euclidean distance. The test is an asymptotically valid test for the family of distributions fulfilling the assumptions of the multivariate central limit theorem (see Hoffelder et al.,2015). The function EDNE.EQ() implements the EDNE-test for equivalence according to Hoffelder et al. (2015). The function EDNE.EQ.dissolution.profiles() implements a variant of the EDNE-test for equivalence analyses of dissolution profiles (see Suarez-Sharp et al.,2020 <DOI:10.1208/s12248-020-00458-9>). EDNE.EQ.dissolution.profiles() checks whether the quadratic mean of the differences of the expected values of both dissolution profile populations is statistically significantly smaller than 10 [\% of label claim]. The current regulatory standard approach for equivalence analyses of dissolution profiles is the similarity factor f2. The statistical hypotheses underlying EDNE.EQ.dissolution.profiles() coincide with the hypotheses for f2 (see Hoffelder et al.,2015, Suarez-Sharp et al., 2020).
An implementation of a variety of escalation with overdose control designs introduced by Babb, Rogatko and Zacks (1998) <doi:10.1002/(SICI)1097-0258(19980530)17:10%3C1103::AID-SIM793%3E3.0.CO;2-9>. It calculates the next dose as a clinical trial proceeds and performs simulations to obtain operating characteristics.
This package provides tools to quantify transmissibility throughout an epidemic from the analysis of time series of incidence as described in Cori et al. (2013) <doi:10.1093/aje/kwt133> and Wallinga and Teunis (2004) <doi:10.1093/aje/kwh255>.
Interactive data exploration with one line of code, automated reporting or use an easy to remember set of tidy functions for low code exploratory data analysis.
User friendly interface based on the R package gstat to fit exponential parametric models to empirical semi-variograms in order to model the spatial correlation structure of health data. Geo-located health outcomes of survey participants may be used to model spatial effects on health in an ego-centred approach. The package contains a range of functions to help explore the spatial structure of the data as well as visualize the fit of exponential models for various metaparameter combinations with respect to the number of lag intervals and maximal distance. Furthermore, the outcome of interest can be adjusted for covariates by fitting a linear regression in a preliminary step before the semi-variogram fitting process.
This package provides functions and data supporting the Eco-Stats text (Warton, 2022, Springer), and solutions to exercises. Functions include tools for using simulation envelopes in diagnostic plots, and a function for diagnostic plots of multivariate linear models. Datasets mentioned in the package are included here (where not available elsewhere) and there is a vignette for each chapter of the text with solutions to exercises.
Import SPSS data, handle and change SPSS meta data, store and access large hierarchical data in SQLite data bases.
Event dataset repository including both real-life and artificial event logs. They can be used in combination with functionalities provided by the bupaR packages. Janssenswillen et al. (2020) <http://ceur-ws.org/Vol-2703/paperTD7.pdf>.
Makes difficult operations easy. Includes these types of functions: shorthand, type conversion, data wrangling, and work flow. Also includes some helpful data objects: NA strings, U.S. state list, color blind charting colors. Built and shared by Oliver Wyman Actuarial Consulting. Accepting proposed contributions through GitHub.
Capture code evaluations and script executions by expressions, outputs, and condition calls for logging.
Unsupervised, multivariate, binary clustering for meaningful annotation of data, taking into account the uncertainty in the data. A specific constructor for trajectory analysis in movement ecology yields behavioural annotation of trajectories based on estimated local measures of velocity and turning angle, eventually with solar position covariate as a daytime indicator, ("Expectation-Maximization Binary Clustering for Behavioural Annotation").
Evidence of Absence software (EoA) is a user-friendly application for estimating bird and bat fatalities at wind farms and designing search protocols. The software is particularly useful in addressing whether the number of fatalities has exceeded a given threshold and what search parameters are needed to give assurance that thresholds were not exceeded. The models are applicable even when zero carcasses have been found in searches, following Huso et al. (2015) <doi:10.1890/14-0764.1>, Dalthorp et al. (2017) <doi:10.3133/ds1055>, and Dalthorp and Huso (2015) <doi:10.3133/ofr20151227>.
Life Table Response Experiments (LTREs) are a method of comparative demographic analysis. The purpose is to quantify how the difference or variance in vital rates (stage-specific survival, growth, and fertility) among populations contributes to difference or variance in the population growth rate, "lambda." We provide functions for one-way fixed design and random design LTRE, using either the classical methods that have been in use for several decades, or an fANOVA-based exact method that directly calculates the impact on lambda of changes in matrix elements, for matrix elements and their interactions. The equations and descriptions for the classical methods of LTRE analysis can be found in Caswell (2001, ISBN: 0878930965), and the fANOVA-based exact methods are described in Hernandez et al. (2023) <doi:10.1111/2041-210X.14065>. We also provide some demographic functions, including generation time from Bienvenu and Legendre (2015) <doi:10.1086/681104>. For implementation of exactLTRE where all possible interactions are calculated, we use an operator matrix presented in Poelwijk, Krishna, and Ranganathan (2016) <doi:10.1371/journal.pcbi.1004771>.
Fit, plot and compare several (extreme value) distribution functions. Compute (truncated) distribution quantile estimates and plot return periods on a linear scale. On the fitting method, see Asquith (2011): Distributional Analysis with L-moment Statistics [...] ISBN 1463508417.
Application of empirical mode decomposition based artificial neural network model for nonlinear and non stationary univariate time series forecasting. For method details see (i) Choudhury (2019) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=55&issue=1&article=013>; (ii) Das (2020) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=56&issue=2&article=002>.
Current layout algorithms such as Kamada Kawai do not take into consideration disjoint clusters in a network, often resulting in a high overlap among the clusters, resulting in a visual â hairballâ that often is uninterpretable. The ExplodeLayout algorithm takes as input (1) an edge list of a unipartite or bipartite network, (2) node layout coordinates (x, y) generated by a layout algorithm such as Kamada Kawai, (3) node cluster membership generated from a clustering algorithm such as modularity maximization, and (4) a radius to enable the node clusters to be â explodedâ to reduce their overlap. The algorithm uses these inputs to generate new layout coordinates of the nodes which â explodesâ the clusters apart, such that the edge lengths within the clusters are preserved, while the edge lengths between clusters are recalculated. The modified network layout with nodes and edges are displayed in two dimensions. The user can experiment with different explode radii to generate a layout which has sufficient separation of clusters, while reducing the overall layout size of the network. This package is a basic version of an earlier version called [epl]<https://github.com/UTMB-DIVA-Lab/epl> that searched for an optimal explode radius, and offered multiple ways to separate clusters in a network (Bhavnani et al(2017) <https://pmc.ncbi.nlm.nih.gov/articles/PMC5543384/>). The example dataset is for a bipartite network, but the algorithm can work also for unipartite networks.
This package contains methods for the estimation of Shannon's entropy, variants of Renyi's entropy, mutual information, Kullback-Leibler divergence, and generalized Simpson's indices. The estimators used have a bias that decays exponentially fast.
This package provides methods for analyzing R by C ecological contingency tables using the extreme case analysis, ecological regression, and Multinomial-Dirichlet ecological inference models. Also provides tools for manipulating higher-dimension data objects.
Dynamic and Interactive Maps with R, powered by leaflet <https://leafletjs.com>. evolMap generates a web page with interactive and dynamic maps to which you can add geometric entities (points, lines or colored geographic areas), and/or markers with optional links between them. The dynamic ability of these maps allows their components to evolve over a continuous period of time or by periods.