Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Ports the Ripser <doi:10.48550/arXiv.1908.02518> and Cubical Ripser <doi:10.48550/arXiv.2005.12692> persistent homology calculation engines from C++. Can be used as a rapid calculation tool in topological data analysis pipelines.
This package creates JavaScript charts. The charts can be included in Shiny apps and R markdown documents, or viewed from the R console and RStudio viewer. Based on the JavaScript library amCharts 4 and the R packages htmlwidgets and reactR'. Currently available types of chart are: vertical and horizontal bar chart, radial bar chart, stacked bar chart, vertical and horizontal Dumbbell chart, line chart, scatter chart, range area chart, gauge chart, boxplot chart, pie chart, and 100% stacked bar chart.
Testing and inference for regression models using residual randomization methods. The basis of inference is an invariance assumption on the regression errors, e.g., clustered errors, or doubly-clustered errors.
Implementation of the tests for rotational symmetry on the hypersphere proposed in Garcà a-Portugués, Paindaveine and Verdebout (2020) <doi:10.1080/01621459.2019.1665527>. The package also implements the proposed distributions on the hypersphere, based on the tangent-normal decomposition, and allows for the replication of the data application considered in the paper.
The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. Under the local randomization approach, RD designs can be interpreted as randomized experiments inside a window around the cutoff. This package provides tools to perform randomization inference for RD designs under local randomization: rdrandinf() to perform hypothesis testing using randomization inference, rdwinselect() to select a window around the cutoff in which randomization is likely to hold, rdsensitivity() to assess the sensitivity of the results to different window lengths and null hypotheses and rdrbounds() to construct Rosenbaum bounds for sensitivity to unobserved confounders. See Cattaneo, Titiunik and Vazquez-Bare (2016) <https://rdpackages.github.io/references/Cattaneo-Titiunik-VazquezBare_2016_Stata.pdf> for further methodological details.
This package provides Rcpp bindings for cpptimer', a simple tic-toc timer class for benchmarking C++ code <https://github.com/BerriJ/cpptimer>. It's not just simple, it's blazing fast! This sleek tic-toc timer class supports overlapping timers as well as OpenMP parallelism <https://www.openmp.org/>. It boasts a nanosecond-level time resolution. We did not find any overhead of the timer itself at this resolution. Results (with summary statistics) are automatically passed back to R as a data frame.
Dynamic Programming implemented in Rcpp'. Includes example partition and out of sample fitting applications. Also supplies additional custom coders for the vtreat package.
This package provides a method to decompose a univariate time series into meaningful subcomponents for analysis and denoising.
Enables binary package installations on Linux distributions. Provides access to RStudio public repositories at <https://packagemanager.posit.co>, and transparent management of system requirements without administrative privileges. Currently supported distributions are CentOS / RHEL', and several RHEL derivatives ('Rocky Linux', AlmaLinux', Oracle Linux', and Amazon Linux'), openSUSE / SLES', Debian', and Ubuntu LTS.
Scelestial infers a lineage tree from single-cell DNA mutation matrix. It generates a tree with approximately maximum parsimony through a Steiner tree approximation algorithm.
For whole-genome analysis, idiograms are virtually the most intuitive and effective way to map and visualize the genome-wide information. RIdeogram was developed to visualize and map whole-genome data on idiograms with no restriction of species.
Direct insertion of over 1000 symbols (e.g. currencies, letters, emojis, arrows, mathematical symbols and so on) into Rmarkdown documents and Shiny applications by incorporating HTML hex codes.
Simulate samples from populations with known covariate distributions, generate response variables according to common linear and generalized linear model families, draw from sampling distributions of regression estimates, and perform visual inference on diagnostics from model fits.
Randomization tests for the statistical comparison of i = two or more individual-based, sample-based or coverage-based rarefaction curves. The ecological null hypothesis is that the i samples were all drawn randomly from a single assemblage, with (necessarily) a single underlying species abundance distribution. The biogeographic null hypothesis is that the i samples were all drawn from different assemblages that, nonetheless, share similar species richness and species abundance distributions. Functions are described in L. Cayuela, N.J. Gotelli & R.K. Colwell (2015) <doi:10.1890/14-1261.1>.
This package provides streamlined functions for summarising and visualising regression models fitted with the rms package, in the preferred format for medical journals. The modelsummary_rms() function produces concise summaries for linear, logistic, and Cox regression models, including automatic handling of models containing restricted cubic spline (RCS) terms. The resulting summary dataframe can be easily converted into publication-ready documents using the flextable and officer packages. The ggrmsMD() function creates clear and customizable plots ('ggplot2 objects) to visualise RCS terms.
This package creates and maintains a build process for complex analytic tasks in R. Package allows to easily generate Makefile for the (GNU) make tool, which drives the build process by (in parallel) executing build commands in order to update results accordingly to given dependencies on changed data or updated source files.
Compute an exact CI for the population mean under a random effects model. The routines implement the algorithm described in Michael, Thronton, Xie, and Tian (2017) <https://haben-michael.github.io/research/Exact_Inference_Meta.pdf>.
An interface between the GRASS geographical information system ('GIS') and R', based on starting R from within the GRASS GIS environment, or running a free-standing R session in a temporary GRASS location; the package provides facilities for using all GRASS commands from the R command line. The original interface package for GRASS 5 (2000-2010) is described in Bivand (2000) <doi:10.1016/S0098-3004(00)00057-1> and Bivand (2001) <https://www.r-project.org/conferences/DSC-2001/Proceedings/Bivand.pdf>. This was succeeded by spgrass6 for GRASS 6 (2006-2016) and rgrass7 for GRASS 7 (2015-present). The rgrass package modernizes the interface for GRASS 8 while still permitting the use of GRASS 7'.
Mixture Composer <https://github.com/modal-inria/MixtComp> is a project to build mixture models with heterogeneous data sets and partially missing data management. It includes models for real, categorical, counting, functional and ranking data. This package contains the minimal R interface of the C++ MixtComp library.
This package provides a trimmed down copy of the "kent-core source tree" turned into a C library for manipulation of .2bit files. See <https://genome.ucsc.edu/FAQ/FAQformat.html#format7> for a quick overview of the 2bit format. The "kent-core source tree" can be found here: <https://github.com/ucscGenomeBrowser/kent-core/>. Only the .c and .h files from the source tree that are related to manipulation of .2bit files were kept. Note that the package is primarily useful to developers of other R packages who wish to use the 2bit C library in their own C'/'C++ code.
Perform a regression analysis, generate a regression table, create a scatter plot, and download the results. It uses stargazer for generating regression tables and ggplot2 for creating plots. With just two lines of code, you can perform a regression analysis, visualize the results, and save the output. It is part of my make R easy project where one doesn't need to know how to use various packages in order to get results and makes it easily accessible to beginners. This is a part of my make R easy project. Help from ChatGPT was taken. References were Wickham (2016) <doi:10.1007/978-3-319-24277-4>.
This package provides a useful statistical tool for the construction and analysis of Honeycomb Selection Designs. More information about this type of designs: Fasoula V. (2013) <doi:10.1002/9781118497869.ch6> Fasoula V.A., and Tokatlidis I.S. (2012) <doi:10.1007/s13593-011-0034-0> Fasoulas A.C., and Fasoula V.A. (1995) <doi:10.1002/9780470650059.ch3> Tokatlidis I. (2016) <doi:10.1017/S0014479715000150> Tokatlidis I., and Vlachostergios D. (2016) <doi:10.3390/d8040029>.
This package provides tools for performing phylogenetic comparative methods for datasets with with multiple observations per species (intraspecific variation or measurement error) and/or missing data (Goolsby et al. 2017). Performs ancestral state reconstruction and missing data imputation on the estimated evolutionary model, which can be specified as Brownian Motion, Ornstein-Uhlenbeck, Early-Burst, Pagel's lambda, kappa, or delta, or a star phylogeny.
This package provides a programmatic interface to web-services of YouTheria. YouTheria is an online database of mammalian trait data <http://www.utheria.org/>.