Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create a parallel coordinates plot, using `htmlwidgets` package and `d3.js`.
Consider a possibly nonlinear nonparametric regression with p regressors. We provide evaluations by 13 methods to rank regressors by their practical significance or importance using various methods, including machine learning tools. Comprehensive methods are as follows. m6=Generalized partial correlation coefficient or GPCC by Vinod (2021)<doi:10.1007/s10614-021-10190-x> and Vinod (2022)<https://www.mdpi.com/1911-8074/15/1/32>. m7= a generalization of psychologists effect size incorporating nonlinearity and many variables. m8= local linear partial (dy/dxi) using the np package for kernel regressions. m9= partial (dy/dxi) using the NNS package. m10= importance measure using the NNS boost function. m11= Shapley Value measure of importance (cooperative game theory). m12 and m13= two versions of the random forest algorithm. Taraldsen's exact density for sampling distribution of correlations added.
This package provides functions to load Research Patient Data Registry ('RPDR') text queries from Partners Healthcare institutions into R. The package also provides helper functions to manipulate data and execute common procedures such as finding the closest radiological exams considering a given timepoint, or creating a DICOM header database from the downloaded images. All functionalities are parallelized for fast and efficient analyses.
Facilitates the performance of several analyses, including simple and sequential path coefficient analysis, correlation estimate, drawing correlogram, Heatmap, and path diagram. When working with raw data, that includes one or more dependent variables along with one or more independent variables are available, the path coefficient analysis can be conducted. It allows for testing direct effects, which can be a vital indicator in path coefficient analysis. The process of preparing the dataset rule is explained in detail in the vignette file "Path.Analysis_manual.Rmd". You can find this in the folders labelled "data" and "~/inst/extdata". Also see: 1)the lavaan', 2)a sample of sequential path analysis in metan suggested by Olivoto and Lúcio (2020) <doi:10.1111/2041-210X.13384>, 3)the simple PATHSAS macro written in SAS by Cramer et al. (1999) <doi:10.1093/jhered/90.1.260>, and 4)the semPlot() function of OpenMx as initial tools for conducting path coefficient analyses and SEM (Structural Equation Modeling). To gain a comprehensive understanding of path coefficient analysis, both in theory and practice, see a Minitab macro developed by Arminian, A. in the paper by Arminian et al. (2008) <doi:10.1080/15427520802043182>.
Estimates corrected Procrustean correlation between matrices for removing overfitting effect. Coissac Eric and Gonindard-Melodelima Christelle (2019) <doi:10.1101/842070>.
This package contains utilities for the analysis of post-translational modifications (PTMs) in proteins, with particular emphasis on the sulfoxidation of methionine residues. Features include the ability to download, filter and analyze data from the sulfoxidation database MetOSite'. Utilities to search and characterize S-aromatic motifs in proteins are also provided. In addition, functions to analyze sequence environments around modifiable residues in proteins can be found. For instance, ptm allows to search for amino acids either overrepresented or avoided around the modifiable residues from the proteins of interest. Functions tailored to test statistical hypothesis related to these differential sequence environments are also implemented. Further and detailed information regarding the methods in this package can be found in (Aledo (2020) <https://metositeptm.com>).
Simulating particle movement in 2D space has many application. The particles package implements a particle simulator based on the ideas behind the d3-force JavaScript library. particles implements all forces defined in d3-force as well as others such as vector fields, traps, and attractors.
The prevalence package provides Frequentist and Bayesian methods for prevalence assessment studies. IMPORTANT: the truePrev functions in the prevalence package call on JAGS (Just Another Gibbs Sampler), which therefore has to be available on the user's system. JAGS can be downloaded from <https://mcmc-jags.sourceforge.io/>.
Perform scale linking to establish relationships between instruments that measure similar constructs according to the PROsetta Stone methodology, as in Choi, Schalet, Cook, & Cella (2014) <doi:10.1037/a0035768>.
This package provides functions to read and write APE-compatible phylogenetic trees in NEXUS and Newick formats, while preserving annotations.
An interactive document on the topic of basic probability using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://analyticmodels.shinyapps.io/BayesShiny/>.
This package performs elementary probability calculations on finite sample spaces, which may be represented by data frames or lists. This package is meant to rescue some widely used functions from the archived prob package (see <https://cran.r-project.org/src/contrib/Archive/prob/>). Functionality includes setting up sample spaces, counting tools, defining probability spaces, performing set algebra, calculating probability and conditional probability, tools for simulation and checking the law of large numbers, adding random variables, and finding marginal distributions. Characteristic functions for all base R distributions are included.
Defines aesthetically pleasing colour palettes.
The propensity score is one of the most widely used tools in studying the causal effect of a treatment, intervention, or policy. Given that the propensity score is usually unknown, it has to be estimated, implying that the reliability of many treatment effect estimators depends on the correct specification of the (parametric) propensity score. This package implements the data-driven nonparametric diagnostic tools for detecting propensity score misspecification proposed by Sant'Anna and Song (2019) <doi:10.1016/j.jeconom.2019.02.002>.
This package provides functions used to fit and test the phenology of species based on counts. Based on Girondot, M. (2010) <doi:10.3354/esr00292> for the phenology function, Girondot, M. (2017) <doi:10.1016/j.ecolind.2017.05.063> for the convolution of negative binomial, Girondot, M. and Rizzo, A. (2015) <doi:10.2993/etbi-35-02-337-353.1> for Bayesian estimate, Pfaller JB, ..., Girondot M (2019) <doi:10.1007/s00227-019-3545-x> for tag-loss estimate, Hancock J, ..., Girondot M (2019) <doi:10.1016/j.ecolmodel.2019.04.013> for nesting history, Laloe J-O, ..., Girondot M, Hays GC (2020) <doi:10.1007/s00227-020-03686-x> for aggregating several seasons.
Access the data of the Catalogue of the Timber Forest Species of the Peruvian Amazon Vásquez Martà nez, R., & Rojas Gonzáles, R.D.P.(2022)<doi:10.21704/rfp.v37i3.1956>.
Poisson disk sampling is a method of generating blue noise sample patterns where all samples are at least a specified distance apart. Poisson samples may be generated in two or three dimensions with this package. The algorithm used is an implementation of Bridson's "Fast Poisson disk sampling in arbitrary dimensions" <doi:10.1145%2F1278780.1278807>.
This package provides functions for working with primary event censored distributions and Stan implementations for use in Bayesian modeling. Primary event censored distributions are useful for modeling delayed reporting scenarios in epidemiology and other fields (Charniga et al. (2024) <doi:10.48550/arXiv.2405.08841>). It also provides support for arbitrary delay distributions, a range of common primary distributions, and allows for truncation and secondary event censoring to be accounted for (Park et al. (2024) <doi:10.1101/2024.01.12.24301247>). A subset of common distributions also have analytical solutions implemented, allowing for faster computation. In addition, it provides multiple methods for fitting primary event censored distributions to data via optional dependencies.
Considering the singly imputed synthetic data generated via plug-in sampling under the multivariate normal model, draws inference procedures including the generalized variance, the sphericity test, the test for independence between two subsets of variables, and the test for the regression of one set of variables on the other. For more details see Klein et al. (2021) <doi:10.1007/s13571-019-00215-9>.
This package provides functions to compute the potential model as defined by Stewart (1941) <doi:10.1126/science.93.2404.89>. Several options are available to customize the model, such as the possibility to fine-tune the distance friction functions or to use custom distance matrices. Some computations are parallelized to improve their efficiency.
This package provides tools for both single and batch image manipulation and analysis (Olivoto, 2022 <doi:10.1111/2041-210X.13803>) and phytopathometry (Olivoto et al., 2022 <doi:10.1007/S40858-021-00487-5>). The tools can be used for the quantification of leaf area, object counting, extraction of image indexes, shape measurement, object landmark identification, and Elliptical Fourier Analysis of object outlines (Claude (2008) <doi:10.1007/978-0-387-77789-4>). The package also provides a comprehensive pipeline for generating shapefiles with complex layouts and supports high-throughput phenotyping of RGB, multispectral, and hyperspectral orthomosaics. This functionality facilitates field phenotyping using UAV- or satellite-based imagery.
The image of the amino acid transform on the protein level is drawn, and the automatic routing of the functional elements such as the domain and the mutation site is completed.
Uses provenance collected by rdtLite package or comparable tool to display information about input files, output files, and exchanged files for a single R script or a series of R scripts.
Make statistical inference on the probability of being in response, the duration of response, and the cumulative response rate up to a given time point. The method can be applied to analyze phase II randomized clinical trials with the endpoints being time to treatment response and time to progression or death.