Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Example data for the GPA package, consisting of the p-values of 1,219,805 SNPs for five psychiatric disorder GWAS from the psychiatric GWAS consortium (PGC), with the annotation data using genes preferentially expressed in the central nervous system (CNS).
Graph alignment is an extension package for the R programming environment which provides functions for finding an alignment between two networks based on link and node similarity scores. (J. Berg and M. Laessig, "Cross-species analysis of biological networks by Bayesian alignment", PNAS 103 (29), 10967-10972 (2006)).
Offers a set of autoplot methods to visualize tree-like structures (e.g., hierarchical clustering and classification/regression trees) using ggtree'. You can adjust graphical parameters using grammar of graphic syntax and integrate external data to the tree.
GSNAP and GMAP are a pair of tools to align short-read data written by Tom Wu. This package provides convenience methods to work with GMAP and GSNAP from within R. In addition, it provides methods to tally alignment results on a per-nucleotide basis using the bam_tally tool.
This package provides a visual exploration tool for multiple sequence alignment and associated data. Supports MSA of DNA, RNA, and protein sequences using ggplot2'. Multiple sequence alignment can easily be combined with other ggplot2 plots, such as phylogenetic tree Visualized by ggtree', boxplot, genome map and so on. More features: visualization of sequence logos, sequence bundles, RNA secondary structures and detection of sequence recombinations.
This package provides a package with focus on analysis of discrete regions of the genome. This package is useful for investigation of one or a few genes using Affymetrix data, since it will extract probe level data using the Affymetrix Power Tools application and wrap these data into a ProbeLevelSet. A ProbeLevelSet directly extends the expressionSet, but includes additional information about the sequence of each probe and the probe set it is derived from. The package includes a number of functions used for plotting these probe level data as a function of location along sequences of mRNA-strands. This can be used for analysis of variable splicing, and is especially well suited for use with exon-array data.
Find the most characteristic gene ontology terms for groups of human genes. This package was created as a part of the thesis which was developed under the auspices of MI^2 Group (http://mi2.mini.pw.edu.pl/, https://github.com/geneticsMiNIng).
gwasurvivr is a package to perform survival analysis using Cox proportional hazard models on imputed genetic data.
Package with metadata for fast genotyping Affymetrix GenomeWideSnp_5 arrays using the crlmm package. Annotation build is hg19.
This packages aims for easy accessible application of classifiers which have been published in literature using an ExpressionSet as input.
This package provides a collection of meta-analysis tools for analysing high throughput experimental data.
This package uses bayesian network learning to detect relationships between Gene Modules detected by WGCNA and immune cell signatures defined by xCell. It is a hypothesis generating tool.
Classification using generalized partial least squares for two-group and multi-group (more than 2 group) classification.
This package implements a metabolic network analysis pipeline to identify an active metabolic module based on high throughput data. The pipeline takes as input transcriptional and/or metabolic data and finds a metabolic subnetwork (module) most regulated between the two conditions of interest. The package further provides functions for module post-processing, annotation and visualization.
This package provides functionalities to translate gene or protein identifiers between state-of-art biological databases: CARD (<https://card.mcmaster.ca/>), NCBI Protein, Nucleotide and Gene (<https://www.ncbi.nlm.nih.gov/>), UniProt (<https://www.uniprot.org/>) and KEGG (<https://www.kegg.jp>). Also offers complementary functionality like NCBI identical proteins or UniProt similar genes clusters retrieval.
This package contains core functions to process and analyze drug response data. The package provides tools for normalizing, averaging, and calculation of gDR metrics data. All core functions are wrapped into the pipeline function allowing analyzing the data in a straightforward way.
Simple visualizations of alignments of DNA or AA sequences as well as arbitrary strings. Compatible with Biostrings and ggplot2. The plots are fully customizable using ggplot2 modifiers such as theme().
The package contains methods to visualise the expression profile of genes from a microarray or RNA-seq experiment, and offers a supervised clustering approach to identify GO terms containing genes with expression levels that best classify two or more predefined groups of samples. Annotations for the genes present in the expression dataset may be obtained from Ensembl through the biomaRt package, if not provided by the user. The default random forest framework is used to evaluate the capacity of each gene to cluster samples according to the factor of interest. Finally, GO terms are scored by averaging the rank (alternatively, score) of their respective gene sets to cluster the samples. P-values may be computed to assess the significance of GO term ranking. Visualisation function include gene expression profile, gene ontology-based heatmaps, and hierarchical clustering of experimental samples using gene expression data.
glmSparseNet is an R-package that generalizes sparse regression models when the features (e.g. genes) have a graph structure (e.g. protein-protein interactions), by including network-based regularizers. glmSparseNet uses the glmnet R-package, by including centrality measures of the network as penalty weights in the regularization. The current version implements regularization based on node degree, i.e. the strength and/or number of its associated edges, either by promoting hubs in the solution or orphan genes in the solution. All the glmnet distribution families are supported, namely "gaussian", "poisson", "binomial", "multinomial", "cox", and "mgaussian".
Manhattan plot and QQ Plot are commonly used to visualize the end result of Genome Wide Association Study. The "ggmanh" package aims to keep the generation of these plots simple while maintaining customizability. Main functions include manhattan_plot, qqunif, and thinPoints.
Single cell RNA-Seq data for 5902 cells from 18 patients with oral cavity head and neck squamous cell carcinoma available as GEO accession [GSE103322] (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103322). GSE103322 data have been parsed into a SincleCellExperiment object available in ExperimentHub.
The geomeTriD (Three-Dimensional Geometry) Package provides interactive 3D visualization of chromatin structures using the WebGL-based three.js (https://threejs.org/) or the rgl rendering library. It is designed to identify and explore spatial chromatin patterns within genomic regions. The package generates dynamic 3D plots and HTML widgets that integrate seamlessly with Shiny applications, enabling researchers to visualize chromatin organization, detect spatial features, and compare structural dynamics across different conditions and data types.
Helps to easily submit a microarray dataset and the associated sample information to GEO by preparing a single file for upload (direct deposit).
This package provides tools for analyzing EWAS, methQTL and GxE genome widely.